找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geodesic Beams in Eigenfunction Analysis; Yaiza Canzani,Jeffrey Galkowski Book 2023 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: Thoracic
21#
發(fā)表于 2025-3-25 04:07:32 | 只看該作者
Unternehmenswahrnehmung am Kapitalmakt,This section gives an introduction to the concepts of structured and unstructured localizers. That is, localizers which respect the property of being a quasimode (at least locally) and those which do not. We discuss the key role played by the former in the method of geodesic beams and indicate the structure of the remainder of the book.
22#
發(fā)表于 2025-3-25 08:50:42 | 只看該作者
Die Komponenten des KreditspreadsIn this chapter, we introduce the semiclassical Laplacian, ., with principal symbol .. We show that its eigenfunctions are smooth, its spectrum is discrete, and that one can build an orthonormal basis of . consisting of Laplace eigenfunctions. The proofs in this section are inspired by the presentation in [Zwo12, Sect.?14.3].
23#
發(fā)表于 2025-3-25 12:49:49 | 只看該作者
,Die Dampf- und Kondensatent?ler,In this chapter, we discuss the tools at the heart of the geodesic beam analysis. That is, the construction of the beams themselves, as well as the corresponding improved estimates.
24#
發(fā)表于 2025-3-25 18:38:59 | 只看該作者
https://doi.org/10.1007/978-3-322-88009-3This chapter illustrates how to apply the geodesic beam techniques developed in Chap.?. to find effective pointwise bounds for Laplace eigenfunctions (Sect.?.), control averages of eigenfunctions over submanifolds (Sect.?.), bound . norms of eigenfunctions for . (Sect.?.) and find improvements on the remainder for the Weyl Law (see Sect.?.).
25#
發(fā)表于 2025-3-25 20:40:43 | 只看該作者
26#
發(fā)表于 2025-3-26 01:42:14 | 只看該作者
,Basic Properties of?Eigenfunctions and?Eigenvalues,In this chapter, we introduce the semiclassical Laplacian, ., with principal symbol .. We show that its eigenfunctions are smooth, its spectrum is discrete, and that one can build an orthonormal basis of . consisting of Laplace eigenfunctions. The proofs in this section are inspired by the presentation in [Zwo12, Sect.?14.3].
27#
發(fā)表于 2025-3-26 08:11:17 | 只看該作者
Geodesic Beam Tools,In this chapter, we discuss the tools at the heart of the geodesic beam analysis. That is, the construction of the beams themselves, as well as the corresponding improved estimates.
28#
發(fā)表于 2025-3-26 10:01:36 | 只看該作者
29#
發(fā)表于 2025-3-26 16:30:45 | 只看該作者
978-3-031-31588-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
30#
發(fā)表于 2025-3-26 19:52:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
重庆市| 德庆县| 板桥市| 南召县| 普兰店市| 菏泽市| 彭泽县| 大足县| 弥渡县| 太白县| 乌兰浩特市| 襄汾县| 林甸县| 平陆县| 思南县| 德州市| 湛江市| 朝阳市| 金堂县| 永泰县| 榆社县| 开化县| 内江市| 瑞金市| 毕节市| 金昌市| 明水县| 祥云县| 新乐市| 阿鲁科尔沁旗| 西林县| 寻乌县| 桃源县| 五寨县| 温州市| 沿河| 贵溪市| 铁岭县| 横山县| 溧水县| 博乐市|