找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geodesic Beams in Eigenfunction Analysis; Yaiza Canzani,Jeffrey Galkowski Book 2023 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: Thoracic
21#
發(fā)表于 2025-3-25 04:07:32 | 只看該作者
Unternehmenswahrnehmung am Kapitalmakt,This section gives an introduction to the concepts of structured and unstructured localizers. That is, localizers which respect the property of being a quasimode (at least locally) and those which do not. We discuss the key role played by the former in the method of geodesic beams and indicate the structure of the remainder of the book.
22#
發(fā)表于 2025-3-25 08:50:42 | 只看該作者
Die Komponenten des KreditspreadsIn this chapter, we introduce the semiclassical Laplacian, ., with principal symbol .. We show that its eigenfunctions are smooth, its spectrum is discrete, and that one can build an orthonormal basis of . consisting of Laplace eigenfunctions. The proofs in this section are inspired by the presentation in [Zwo12, Sect.?14.3].
23#
發(fā)表于 2025-3-25 12:49:49 | 只看該作者
,Die Dampf- und Kondensatent?ler,In this chapter, we discuss the tools at the heart of the geodesic beam analysis. That is, the construction of the beams themselves, as well as the corresponding improved estimates.
24#
發(fā)表于 2025-3-25 18:38:59 | 只看該作者
https://doi.org/10.1007/978-3-322-88009-3This chapter illustrates how to apply the geodesic beam techniques developed in Chap.?. to find effective pointwise bounds for Laplace eigenfunctions (Sect.?.), control averages of eigenfunctions over submanifolds (Sect.?.), bound . norms of eigenfunctions for . (Sect.?.) and find improvements on the remainder for the Weyl Law (see Sect.?.).
25#
發(fā)表于 2025-3-25 20:40:43 | 只看該作者
26#
發(fā)表于 2025-3-26 01:42:14 | 只看該作者
,Basic Properties of?Eigenfunctions and?Eigenvalues,In this chapter, we introduce the semiclassical Laplacian, ., with principal symbol .. We show that its eigenfunctions are smooth, its spectrum is discrete, and that one can build an orthonormal basis of . consisting of Laplace eigenfunctions. The proofs in this section are inspired by the presentation in [Zwo12, Sect.?14.3].
27#
發(fā)表于 2025-3-26 08:11:17 | 只看該作者
Geodesic Beam Tools,In this chapter, we discuss the tools at the heart of the geodesic beam analysis. That is, the construction of the beams themselves, as well as the corresponding improved estimates.
28#
發(fā)表于 2025-3-26 10:01:36 | 只看該作者
29#
發(fā)表于 2025-3-26 16:30:45 | 只看該作者
978-3-031-31588-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
30#
發(fā)表于 2025-3-26 19:52:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝应县| 平武县| 东乌珠穆沁旗| 西安市| 宁远县| 藁城市| 平利县| 上林县| 扶沟县| 樟树市| 安阳县| 晋江市| 翼城县| 天津市| 定边县| 泰安市| 体育| 积石山| 同心县| 浦县| 常熟市| 都匀市| 平顶山市| 巩留县| 武鸣县| 安泽县| 洛隆县| 雅江县| 铁岭市| 勐海县| 循化| 德阳市| 厦门市| 比如县| 凤山市| 林州市| 邢台市| 拉萨市| 昌乐县| 府谷县| 泉州市|