找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gentzen‘s Centenary; The Quest for Consis Reinhard Kahle,Michael Rathjen Book 2015 Springer International Publishing Switzerland 2015 Consi

[復制鏈接]
樓主: fathom
21#
發(fā)表于 2025-3-25 04:54:52 | 只看該作者
Gentzen’s Consistency Proof in ContextGentzen’s celebrated consistency proof—or proofs, to distinguish the different variations he gave.—of Peano Arithmetic in terms of transfinite induction up to the ordinal. . can be considered as the birth of modern proof theory.
22#
發(fā)表于 2025-3-25 07:55:22 | 只看該作者
Gentzen’s Anti-Formalist ViewsIn June of 1936 Gentzen gave a lecture at Heinrich Scholz’ seminar in Münster. The title of the lecture was “Der Unendlichkeitsbegriff in der Mathematik.”.
23#
發(fā)表于 2025-3-25 14:32:26 | 只看該作者
On Gentzen’s First Consistency Proof for ArithmeticIf nowadays “Gentzen’s consistency proof for arithmetic” is mentioned, one usually refers to [3] while Gentzen’s first (published) consistency proof, i.e.?[2], is widely unknown or ignored. The present paper is intended to change this unsatisfactory situation by presenting [2, IV.?Abschnitt] in a slightly modified and modernized form.
24#
發(fā)表于 2025-3-25 18:33:14 | 只看該作者
A Direct Gentzen-Style Consistency Proof for Heyting ArithmeticGerhard Gentzen was the first to give a proof of the consistency of Peano Arithmetic and in all he worked out four different proofs between 1934 and 1939. The second proof was published as [1], the third as [2], and the fourth as [3]. The first proof was published posthumously in English translation in [4] and in the German original as?[5].
25#
發(fā)表于 2025-3-25 21:43:48 | 只看該作者
Proof Theory for Theories of Ordinals III: , -ReflectionThis paper deals with a proof theory for a theory T. of .-reflecting ordinals using a system . of ordinal diagrams. This is a sequel to the previous one (Arai, Ann Pure Appl Log 129:39–92, 2004) in which a theory for .-reflecting ordinals is analysed proof-theoretically.
26#
發(fā)表于 2025-3-26 01:32:49 | 只看該作者
27#
發(fā)表于 2025-3-26 05:25:56 | 只看該作者
28#
發(fā)表于 2025-3-26 09:23:12 | 只看該作者
https://doi.org/10.1007/978-3-662-29053-8ication of how to reach any ordinal .. In his analysis Gentzen used ordinals in Cantor normal form. We shall look at ordinals as given by finite trees and then see how the climbing up to . can be justified there with methods from first order arithmetic, and methods to use where we climb above it.
29#
發(fā)表于 2025-3-26 12:45:49 | 只看該作者
30#
發(fā)表于 2025-3-26 17:26:53 | 只看該作者
Climbing Mount ,ication of how to reach any ordinal .. In his analysis Gentzen used ordinals in Cantor normal form. We shall look at ordinals as given by finite trees and then see how the climbing up to . can be justified there with methods from first order arithmetic, and methods to use where we climb above it.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 20:16
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乐清市| 安西县| 呼玛县| 和龙市| 宁陵县| 汝阳县| 牟定县| 闽清县| 昔阳县| 明水县| 绥棱县| 交口县| 宁安市| 马山县| 临清市| 永兴县| 兴化市| 巩义市| 广灵县| 南和县| 潮州市| 岚皋县| 公主岭市| 大关县| 原平市| 黄梅县| 和政县| 东宁县| 沂南县| 察隅县| 周宁县| 津市市| 军事| 崇礼县| 福清市| 余江县| 伊川县| 杭州市| 凌海市| 锡林郭勒盟| 株洲市|