找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Genetic Theory for Cubic Graphs; Pouya Baniasadi,Vladimir Ejov,Michael Haythorpe Book 2016 Springer International Publishing Switzerland 2

[復(fù)制鏈接]
樓主: HIV763
11#
發(fā)表于 2025-3-23 10:29:01 | 只看該作者
12#
發(fā)表于 2025-3-23 17:08:19 | 只看該作者
13#
發(fā)表于 2025-3-23 21:42:02 | 只看該作者
14#
發(fā)表于 2025-3-23 22:18:44 | 只看該作者
Genetic Theory for Cubic Graphs,t a slightly more complicated descendant. We prove that every descendant can be constructed from a family of genes via the use of our six operations, and state the result (to be proved in Chap.?3) that this family is unique for any given descendant.
15#
發(fā)表于 2025-3-24 02:27:32 | 只看該作者
Inherited Properties of Descendants,ively, to construct a graph with desired properties by choosing smaller genes with those properties. We follow each section with a discussion of famous results and conjectures relating to the graph properties, and how the results of this chapter relate to them.
16#
發(fā)表于 2025-3-24 10:23:53 | 只看該作者
Uniqueness of Ancestor Genes, graph has cardinality which is a fixed constant for that graph. We then proceed to prove that for any descendant without parthenogenic objects, it is possible to isolate at least two genes with single inverse breeding operations. Finally, we use each of these results to prove the uniqueness theorem.
17#
發(fā)表于 2025-3-24 11:58:44 | 只看該作者
Book 2016lesman Problem) may be “inherited” from simpler graphs which – in an appropriate sense – could be seen as “ancestors” of the given graph instance. The authors propose a partitioning of the set of unlabeled, connected cubic graphs into two disjoint subsets named genes and descendants, where the cardi
18#
發(fā)表于 2025-3-24 14:53:20 | 只看該作者
19#
發(fā)表于 2025-3-24 19:38:29 | 只看該作者
20#
發(fā)表于 2025-3-24 23:40:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
托克托县| 寻甸| 平顶山市| 高密市| 西贡区| 卓尼县| 合作市| 呼伦贝尔市| 扎赉特旗| 九台市| 大埔区| 瓦房店市| 余江县| 神木县| 当阳市| 当雄县| 灵丘县| 长垣县| 上虞市| 石渠县| 夏河县| 兴仁县| 陆良县| 华蓥市| 长沙市| 安徽省| 义乌市| 乌鲁木齐县| 荃湾区| 思南县| 吉安市| 望都县| 阳高县| 江口县| 德清县| 贵州省| 嫩江县| 汉阴县| 睢宁县| 镇安县| 镶黄旗|