找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Genetic Algorithms for Machine Learning; John J. Grefenstette Book 1994 Springer Science+Business Media New York 1994 algorithms.control.d

[復(fù)制鏈接]
查看: 53366|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:07:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Genetic Algorithms for Machine Learning
編輯John J. Grefenstette
視頻videohttp://file.papertrans.cn/383/382441/382441.mp4
圖書封面Titlebook: Genetic Algorithms for Machine Learning;  John J. Grefenstette Book 1994 Springer Science+Business Media New York 1994 algorithms.control.d
描述The articles presented here were selected from preliminaryversions presented at the International Conference on GeneticAlgorithms in June 1991, as well as at a special Workshop on GeneticAlgorithms for Machine Learning at the same Conference. .Genetic algorithms are general-purpose search algorithms that useprinciples inspired by natural population genetics to evolve solutionsto problems. The basic idea is to maintain a population of knowledgestructure that represent candidate solutions to the problem ofinterest. The population evolves over time through a process ofcompetition (i.e. survival of the fittest) and controlled variation(i.e. recombination and mutation). ..Genetic Algorithms for Machine Learning. contains articles onthree topics that have not been the focus of many previous articles onGAs, namely concept learning from examples, reinforcement learning forcontrol, and theoretical analysis of GAs. It is hoped that this samplewill serve to broaden the acquaintance of the general machine learningcommunity with the major areas of work on GAs. The articles in thisbook address a number of central issues in applying GAs to machinelearning problems. For example, the choice of appr
出版日期Book 1994
關(guān)鍵詞algorithms; control; decision model; genetic algorithms; genetics; knowledge; learning; machine learning; mu
版次1
doihttps://doi.org/10.1007/978-1-4615-2740-4
isbn_softcover978-1-4613-6182-4
isbn_ebook978-1-4615-2740-4
copyrightSpringer Science+Business Media New York 1994
The information of publication is updating

書目名稱Genetic Algorithms for Machine Learning影響因子(影響力)




書目名稱Genetic Algorithms for Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Genetic Algorithms for Machine Learning網(wǎng)絡(luò)公開度




書目名稱Genetic Algorithms for Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Genetic Algorithms for Machine Learning被引頻次




書目名稱Genetic Algorithms for Machine Learning被引頻次學(xué)科排名




書目名稱Genetic Algorithms for Machine Learning年度引用




書目名稱Genetic Algorithms for Machine Learning年度引用學(xué)科排名




書目名稱Genetic Algorithms for Machine Learning讀者反饋




書目名稱Genetic Algorithms for Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:33:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:27:27 | 只看該作者
地板
發(fā)表于 2025-3-22 05:26:58 | 只看該作者
5#
發(fā)表于 2025-3-22 09:04:16 | 只看該作者
6#
發(fā)表于 2025-3-22 15:00:04 | 只看該作者
theoretical analysis of GAs. It is hoped that this samplewill serve to broaden the acquaintance of the general machine learningcommunity with the major areas of work on GAs. The articles in thisbook address a number of central issues in applying GAs to machinelearning problems. For example, the choice of appr978-1-4613-6182-4978-1-4615-2740-4
7#
發(fā)表于 2025-3-22 20:48:51 | 只看該作者
Dermatological Disorders and Artifacts,raditional forms of bias found in other concept learning systems. Finally, the architecture of the system encourages explicit representation of such biases and, as a result, provides for an important additional feature: the ability to.adjust system bias. The viability of this approach is illustrated
8#
發(fā)表于 2025-3-23 00:41:41 | 只看該作者
9#
發(fā)表于 2025-3-23 01:39:16 | 只看該作者
Clinical Epidemiology of Melanomapendent populations seemed to improve performance, and that hillclimbing outperformed both the original and partitioned forms of the GA on these functions. These results seemed to contradict several commonly held expectations about GAs..We begin by reviewing.in GAs. We then give an informal descript
10#
發(fā)表于 2025-3-23 09:37:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淮安市| 赤城县| 独山县| 临汾市| 开封市| 宁武县| 勐海县| 佛冈县| 晋城| 台山市| 西藏| 定州市| 广丰县| 永登县| 秀山| 大同市| 昌邑市| 会泽县| 得荣县| 志丹县| 富川| 巍山| 镇宁| 肃宁县| 温州市| 新安县| 新余市| 安吉县| 绥中县| 文安县| 白水县| 潜江市| 宁都县| 丰原市| 东源县| 安泽县| 理塘县| 昌吉市| 荣成市| 恭城| 祁门县|