找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Genetic Algorithms and Genetic Programming in Computational Finance; Shu-Heng Chen Book 2002 Springer Science+Business Media New York 2002

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:16:44 | 只看該作者
Why customer driven manufacturings. Compared to the traditional arbitrage-based approach, this technique is useful when the underlying asset dynamics are unknown or when the pricing equations are too complicated to solve analytically. Comparing to other established data-driven option pricing techniques such as neural networks, impl
42#
發(fā)表于 2025-3-28 20:19:13 | 只看該作者
43#
發(fā)表于 2025-3-29 00:42:52 | 只看該作者
https://doi.org/10.1007/3-540-31319-2 that is suitable for online trading. Our benchmark for . is the Tucker (1991) put-call-futures (.) parity condition for detecting arbitrage profits in the index options and futures markets. The latter presents two main problems, (.) The windows for profitable arbitrage opportunities exist for short
44#
發(fā)表于 2025-3-29 06:46:56 | 只看該作者
45#
發(fā)表于 2025-3-29 07:38:31 | 只看該作者
Evolutionary Decision Trees for Stock Index Options and Futures Arbitragesampling is used to train . to pick up the fundamental arbitrage patterns. The further novel aspect of . is a constraint satisfaction feature supplementing the fitness function that enables the user to train the .. by learning to satisfy a minimum and maximum set on the number of arbitrage opportuni
46#
發(fā)表于 2025-3-29 14:17:52 | 只看該作者
the volume, which will enable readers without a strong programming background to gain hands-on experience in dealing with much of the technical material introduced in this work.978-1-4613-5262-4978-1-4615-0835-9
47#
發(fā)表于 2025-3-29 19:20:47 | 只看該作者
https://doi.org/10.1007/978-3-658-43326-0ptimized using Genetic Algorithm (GA). Two training approaches—incremental and dynamic—are designed and studied. The system was evaluated with the stocks in NASDAQ market. Experimental results showed that the system can give reliable buy-sell signals and using the system to perform buy-sell can prod
48#
發(fā)表于 2025-3-29 22:15:36 | 只看該作者
https://doi.org/10.1007/3-540-31319-2sampling is used to train . to pick up the fundamental arbitrage patterns. The further novel aspect of . is a constraint satisfaction feature supplementing the fitness function that enables the user to train the .. by learning to satisfy a minimum and maximum set on the number of arbitrage opportuni
49#
發(fā)表于 2025-3-30 00:44:08 | 只看該作者
50#
發(fā)表于 2025-3-30 07:25:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
磐安县| 互助| 忻州市| 枣阳市| 武城县| 涟水县| 明光市| 乐亭县| 白山市| 西安市| 镇江市| 汾西县| 鄂托克前旗| 松桃| 沽源县| 竹北市| 洛隆县| 武鸣县| 孟州市| 土默特右旗| 定兴县| 柞水县| 贵州省| 长武县| 江山市| 洱源县| 大冶市| 辽中县| 绥宁县| 兴和县| 邻水| 盖州市| 深圳市| 青铜峡市| 衢州市| 中方县| 钟山县| 华宁县| 和林格尔县| 屏南县| 新郑市|