找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling; Schirin B?r Book 2022 The Editor(s) (if applicable)

[復(fù)制鏈接]
查看: 45182|回復(fù): 46
樓主
發(fā)表于 2025-3-21 19:41:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling
編輯Schirin B?r
視頻videohttp://file.papertrans.cn/383/382380/382380.mp4
圖書(shū)封面Titlebook: Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling;  Schirin B?r Book 2022 The Editor(s) (if applicable)
描述The production control of flexible manufacturing systems is a relevant component that must go along with the requirements of being flexible in terms of new product variants, new machine skills and reaction to unforeseen events during runtime. This work focuses on developing a reactive job-shop scheduling system for flexible and re-configurable manufacturing systems. Reinforcement Learning approaches are therefore investigated for the concept of multiple agents that control products including transportation and resource allocation..
出版日期Book 2022
關(guān)鍵詞Production Scheduling; Flexible Manufacturing; Machine Learning; Multi-Agent System; Reinforcement Learn
版次1
doihttps://doi.org/10.1007/978-3-658-39179-9
isbn_softcover978-3-658-39178-2
isbn_ebook978-3-658-39179-9
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
The information of publication is updating

書(shū)目名稱Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling影響因子(影響力)




書(shū)目名稱Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling影響因子(影響力)學(xué)科排名




書(shū)目名稱Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling被引頻次




書(shū)目名稱Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling被引頻次學(xué)科排名




書(shū)目名稱Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling年度引用




書(shū)目名稱Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling年度引用學(xué)科排名




書(shū)目名稱Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling讀者反饋




書(shū)目名稱Generic Multi-Agent Reinforcement Learning Approach for Flexible Job-Shop Scheduling讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:17:36 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:40:24 | 只看該作者
Reinforcement Learning as an Approach for Flexible Scheduling,se of production scheduling, scheduling problems are often a decision-making process of sequences of situations and decisions within a system of complex relations. It was proven to be efficient to distribute the decision making to independent but cooperating entities, such as the drive agents in the
地板
發(fā)表于 2025-3-22 07:12:24 | 只看該作者
5#
發(fā)表于 2025-3-22 09:03:52 | 只看該作者
6#
發(fā)表于 2025-3-22 15:35:02 | 只看該作者
7#
發(fā)表于 2025-3-22 17:37:24 | 只看該作者
8#
發(fā)表于 2025-3-22 22:00:42 | 只看該作者
in terms of new product variants, new machine skills and reaction to unforeseen events during runtime. This work focuses on developing a reactive job-shop scheduling system for flexible and re-configurable manufacturing systems. Reinforcement Learning approaches are therefore investigated for the co
9#
發(fā)表于 2025-3-23 03:22:46 | 只看該作者
https://doi.org/10.1057/9781137384263. When using our smartphones for a phone call, our voice is sent via Internet Protocol (IP) by packages that have to be properly scheduled based on the traffic on the line, so that every package arrives on time.
10#
發(fā)表于 2025-3-23 06:49:34 | 只看該作者
Blended Learning Needs Blended Evaluation,irements into technical functionalities and to evaluate the dependencies and relations between both sides in steps seven and eight. We consequently introduce our concept of an agent-based scheduling approach considering these technical functionalities.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苏尼特左旗| 芜湖市| 涪陵区| 马边| 襄垣县| 郎溪县| 宾阳县| 咸阳市| 澄城县| 珠海市| 庆阳市| 枣庄市| 朝阳县| 龙胜| 双流县| 闻喜县| 客服| 蒙阴县| 邵阳县| 化州市| 谢通门县| 怀宁县| 依兰县| 宜都市| 恩施市| 紫阳县| 卢氏县| 常宁市| 县级市| 康马县| 弥渡县| 宜良县| 广汉市| 石渠县| 柳江县| 滁州市| 沂南县| 诸暨市| 鸡西市| 江山市| 娱乐|