找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generic Coarse Geometry of Leaves; Jesús A. álvarez López,Alberto Candel Book 2018 Springer Nature Switzerland AG 2018 Asymptotic Dimensio

[復(fù)制鏈接]
樓主: Encomium
21#
發(fā)表于 2025-3-25 07:19:41 | 只看該作者
22#
發(fā)表于 2025-3-25 08:11:21 | 只看該作者
23#
發(fā)表于 2025-3-25 13:07:22 | 只看該作者
978-3-319-94131-8Springer Nature Switzerland AG 2018
24#
發(fā)表于 2025-3-25 18:23:55 | 只看該作者
Generic Coarse Geometry of Leaves978-3-319-94132-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
25#
發(fā)表于 2025-3-25 21:42:12 | 只看該作者
26#
發(fā)表于 2025-3-26 00:57:14 | 只看該作者
Introduction,e compact foliated space. For instance, it is stated that, either all dense leaves without holonomy are uniformly coarsely quasi-isometric to each other, or else every leaf is coarsely quasi-isometric to meagerly many leaves. In the minimal case, the first of these alternatives is characterized by c
27#
發(fā)表于 2025-3-26 07:42:30 | 只看該作者
28#
發(fā)表于 2025-3-26 09:04:35 | 只看該作者
Book 2018l the results are richly illustrated with examples. ..The book is primarily aimed at researchers on foliated spaces. More generally, specialists in geometric analysis, topological dynamics, or metric geometry may also benefit from it. .
29#
發(fā)表于 2025-3-26 14:48:04 | 只看該作者
Book 2018s have the same quasi-isometric invariants. ..Every leaf of a compact foliated space has an induced coarse quasi-isometry type, represented by the coarse metric defined by the length of plaque chains given by any finite foliated atlas.? When there are dense leaves either all dense leaves without hol
30#
發(fā)表于 2025-3-26 19:12:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 02:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通江县| 旬邑县| 德格县| 湖口县| 同仁县| 稷山县| 车险| 漳浦县| 湖州市| 亳州市| 双辽市| 井陉县| 乃东县| 五华县| 筠连县| 建宁县| 新竹市| 庄浪县| 福鼎市| 松潘县| 龙江县| 璧山县| 稷山县| 乐昌市| 育儿| 阳江市| 鲜城| 海城市| 嘉禾县| 普兰县| 如东县| 河南省| 犍为县| 自贡市| 峨边| 盐山县| 肃宁县| 延安市| 开阳县| 广水市| 新邵县|