找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generators and Relations in Groups and Geometries; A. Barlotti,E. W. Ellers,K. Strambach Book 1991 Kluwer Academic Publishers 1991 Algebra

[復(fù)制鏈接]
樓主: 要旨
11#
發(fā)表于 2025-3-23 11:37:16 | 只看該作者
2-Generation of finite simple groups and some related topicswhich centers around Steinberg’s unified treatment of groups of Lie type. In §2 we discuss generation of simple groups by special kinds of generating pairs, namely: 1) the generation of simple groups of Lie type by a cyclic maximal torus and a long root element, with application to the solution of t
12#
發(fā)表于 2025-3-23 16:32:09 | 只看該作者
13#
發(fā)表于 2025-3-23 18:49:05 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:08 | 只看該作者
Book 1991nd relations which can be used to detect the structure of a group. Nevertheless, results in the indicated direction exist. The clue is to ask the right question. Classical geometry is a typical example in which the factorization of a motion into reflections or, more generally, of a collineation into
15#
發(fā)表于 2025-3-24 06:11:18 | 只看該作者
Farhad Analoui,Joseph Kwadwo Danquahnd shears. The orthogonal group yields a second outstanding set of generators, namely the set of all orthogonal involutions..We shall report on the solution of the length problem for a number of classical groups. We shall discuss whenever possible different generating sets and the resulting difference in the length of an element.
16#
發(fā)表于 2025-3-24 08:24:13 | 只看該作者
17#
發(fā)表于 2025-3-24 10:59:43 | 只看該作者
18#
發(fā)表于 2025-3-24 16:19:01 | 只看該作者
19#
發(fā)表于 2025-3-24 22:09:05 | 只看該作者
20#
發(fā)表于 2025-3-25 01:43:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
栖霞市| 松桃| 永德县| 洞头县| 含山县| 兰西县| 深水埗区| 长海县| 锡林浩特市| 城固县| 平远县| 平和县| 塔城市| 沂南县| 安西县| 宝清县| 泾源县| 兰西县| 新建县| 涟源市| 剑河县| 华蓥市| 进贤县| 河津市| 习水县| 盐城市| 南安市| 湘潭县| 平阴县| 夏津县| 伊春市| 宁波市| 邹平县| 金坛市| 肇东市| 台中市| 会昌县| 彩票| 开封县| 房产| 织金县|