找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generators and Relations in Groups and Geometries; A. Barlotti,E. W. Ellers,K. Strambach Book 1991 Kluwer Academic Publishers 1991 Algebra

[復(fù)制鏈接]
樓主: 要旨
11#
發(fā)表于 2025-3-23 11:37:16 | 只看該作者
2-Generation of finite simple groups and some related topicswhich centers around Steinberg’s unified treatment of groups of Lie type. In §2 we discuss generation of simple groups by special kinds of generating pairs, namely: 1) the generation of simple groups of Lie type by a cyclic maximal torus and a long root element, with application to the solution of t
12#
發(fā)表于 2025-3-23 16:32:09 | 只看該作者
13#
發(fā)表于 2025-3-23 18:49:05 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:08 | 只看該作者
Book 1991nd relations which can be used to detect the structure of a group. Nevertheless, results in the indicated direction exist. The clue is to ask the right question. Classical geometry is a typical example in which the factorization of a motion into reflections or, more generally, of a collineation into
15#
發(fā)表于 2025-3-24 06:11:18 | 只看該作者
Farhad Analoui,Joseph Kwadwo Danquahnd shears. The orthogonal group yields a second outstanding set of generators, namely the set of all orthogonal involutions..We shall report on the solution of the length problem for a number of classical groups. We shall discuss whenever possible different generating sets and the resulting difference in the length of an element.
16#
發(fā)表于 2025-3-24 08:24:13 | 只看該作者
17#
發(fā)表于 2025-3-24 10:59:43 | 只看該作者
18#
發(fā)表于 2025-3-24 16:19:01 | 只看該作者
19#
發(fā)表于 2025-3-24 22:09:05 | 只看該作者
20#
發(fā)表于 2025-3-25 01:43:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淮阳县| 太仆寺旗| 苏尼特左旗| 临朐县| 遵义市| 尖扎县| 新巴尔虎左旗| 柘荣县| 千阳县| 铜山县| 疏勒县| 保康县| 平凉市| 肃北| 花莲县| 内黄县| 江安县| 长治市| 洛隆县| 清流县| 万盛区| 咸阳市| 林芝县| 黔西| 西安市| 平昌县| 武山县| 安新县| 青阳县| 正阳县| 沅江市| 民权县| 京山县| 长岭县| 海城市| 依兰县| 姜堰市| 廊坊市| 芮城县| 巴里| 西平县|