找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generators and Relations for Discrete Groups; H. S. M. Coxeter,W. O. J. Moser Book 19723rd edition Springer-Verlag Berlin Heidelberg 1972

[復(fù)制鏈接]
查看: 17411|回復(fù): 44
樓主
發(fā)表于 2025-3-21 16:18:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Generators and Relations for Discrete Groups
編輯H. S. M. Coxeter,W. O. J. Moser
視頻videohttp://file.papertrans.cn/383/382371/382371.mp4
叢書名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge
圖書封面Titlebook: Generators and Relations for Discrete Groups;  H. S. M. Coxeter,W. O. J. Moser Book 19723rd edition Springer-Verlag Berlin Heidelberg 1972
描述When we began to consider the scope of this book, we envisaged a catalogue supplying at least one abstract definition for any finitely- generated group that the reader might propose. But we soon realized that more or less arbitrary restrietions are necessary, because interesting groups are so numerous. For permutation groups of degree 8 or less (i.e., .subgroups of 2: ), the reader cannot do better than consult the 8 tables of ]OSEPHINE BURNS (1915), while keeping an eye open for misprints. Our own tables (on pages 134-142) deal with groups of low order, finite and infinite groups ()f congruent transformations, symmetrie and alternating groups, linear fractional groups, and groups generated by reflections in real Euclidean space of any number of dimensions. The best substitute for a more extensive catalogue is the description (in Chapter 2) of a method whereby the reader can easily work out his own abstract definition for almost any given finite group. This method is sufficiently mechanical for the use of an electronic computer.
出版日期Book 19723rd edition
關(guān)鍵詞Finite; Groups; Permutation; Scope; Visage; computer; finite group; form; group; mutation; reflection; symmetri
版次3
doihttps://doi.org/10.1007/978-3-662-21946-1
isbn_ebook978-3-662-21946-1
copyrightSpringer-Verlag Berlin Heidelberg 1972
The information of publication is updating

書目名稱Generators and Relations for Discrete Groups影響因子(影響力)




書目名稱Generators and Relations for Discrete Groups影響因子(影響力)學(xué)科排名




書目名稱Generators and Relations for Discrete Groups網(wǎng)絡(luò)公開度




書目名稱Generators and Relations for Discrete Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Generators and Relations for Discrete Groups被引頻次




書目名稱Generators and Relations for Discrete Groups被引頻次學(xué)科排名




書目名稱Generators and Relations for Discrete Groups年度引用




書目名稱Generators and Relations for Discrete Groups年度引用學(xué)科排名




書目名稱Generators and Relations for Discrete Groups讀者反饋




書目名稱Generators and Relations for Discrete Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:50:35 | 只看該作者
Regular Maps,it was remarked by . (1926, p. 238) that “There is no regular map of 8, 10 or 11 hexagons, no map of 14 hexagons although there are maps of 7, 21 and 28 hexagons”. The expression that he sought is our 8.42 (. 1911, p. 418). The first mention of maps on non-orientable surfaces seems to have been by .
板凳
發(fā)表于 2025-3-22 03:09:37 | 只看該作者
Book 19723rd editioner of dimensions. The best substitute for a more extensive catalogue is the description (in Chapter 2) of a method whereby the reader can easily work out his own abstract definition for almost any given finite group. This method is sufficiently mechanical for the use of an electronic computer.
地板
發(fā)表于 2025-3-22 06:08:34 | 只看該作者
f any number of dimensions. The best substitute for a more extensive catalogue is the description (in Chapter 2) of a method whereby the reader can easily work out his own abstract definition for almost any given finite group. This method is sufficiently mechanical for the use of an electronic computer.978-3-662-21946-1
5#
發(fā)表于 2025-3-22 10:17:23 | 只看該作者
https://doi.org/10.1007/978-3-031-39151-4it was remarked by . (1926, p. 238) that “There is no regular map of 8, 10 or 11 hexagons, no map of 14 hexagons although there are maps of 7, 21 and 28 hexagons”. The expression that he sought is our 8.42 (. 1911, p. 418). The first mention of maps on non-orientable surfaces seems to have been by .
6#
發(fā)表于 2025-3-22 16:25:31 | 只看該作者
Cyclic, Dicyclic and Metacyclic Groups,s us to adjoin a new element so as to obtain a larger group; ., the cyclic and non-cyclic groups of order 4 yield the quaternion group and the tetrahedral group, respectively. Observing that the standard treatises use the term . group in two distinct senses, we exhibit both kinds among the groups of
7#
發(fā)表于 2025-3-22 19:25:54 | 只看該作者
Systematic Enumeration of Cosets,verted this method into an almost mechanical technique, a useful tool with a wide range of applications. In § 2.1 we apply it to determine an abstract definition for a given finite group. In § 2.4 we use it to find whether a given subgroup of an abstract group is normal. Finally, in § 2.5 we see how
8#
發(fā)表于 2025-3-22 23:56:45 | 只看該作者
Graphs, Maps and Cayley Diagrams, represent the elements of the group while certain sets of edges are associated with the generators. . (1878a, b) proposed the use of colours to distinguish the edges associated with different generators (see . 1911, pp. 423–427 and the frontispiece). Instead, for the sake of easier printing, we use
9#
發(fā)表于 2025-3-23 03:49:47 | 只看該作者
10#
發(fā)表于 2025-3-23 08:54:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临清市| 苏州市| 本溪市| 阳曲县| 泰安市| 台北市| 梁山县| 红安县| 云霄县| 大埔县| 思茅市| 中阳县| 辽阳市| 安平县| 洪洞县| 扎鲁特旗| 应城市| 兴安盟| 乌审旗| 和林格尔县| 鄢陵县| 松潘县| 南阳市| 沙湾县| 乌恰县| 称多县| 和龙市| 恩施市| 页游| 湛江市| 肥乡县| 汪清县| 潍坊市| 麟游县| 忻州市| 沙洋县| 汨罗市| 泸水县| 吴桥县| 宁海县| 淮安市|