找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generative Adversarial Networks for Image Generation; Xudong Mao,Qing Li Book 2021 Springer Nature Singapore Pte Ltd. 2021 Generative Adve

[復制鏈接]
查看: 34483|回復: 35
樓主
發(fā)表于 2025-3-21 19:59:19 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Generative Adversarial Networks for Image Generation
編輯Xudong Mao,Qing Li
視頻videohttp://file.papertrans.cn/383/382342/382342.mp4
概述Offers an overview of the theoretical concepts and the current challenges of generative adversarial networks.Proposes advanced GAN image generation approaches with higher image quality and better trai
圖書封面Titlebook: Generative Adversarial Networks for Image Generation;  Xudong Mao,Qing Li Book 2021 Springer Nature Singapore Pte Ltd. 2021 Generative Adve
描述.Generative adversarial networks (GANs)?were introduced by Ian Goodfellow and his co-authors including Yoshua Bengio in 2014, and were to referred by Yann Lecun (Facebook’s AI research director) as “the most interesting idea in the last 10 years in ML.” GANs’ potential is huge, because they can learn to mimic any distribution of data, which means they can be taught to create worlds similar to our own in any domain: images, music, speech, prose. They are robot artists in a sense, and their?output is remarkable?– poignant even. In 2018, Christie’s sold a portrait that had been generated by a GAN for $432,000...Although image generation has been challenging, GAN image generation has proved to be very successful and impressive. However, there are two remaining challenges for GAN image generation: the quality of the generated image and the training stability. This book first provides an overview of GANs, and then discusses the task of image generation and the detailsof GAN image generation. It also investigates a number of approaches to address the two remaining challenges for GAN image generation. Additionally, it explores three promising applications of GANs, including image-to-image
出版日期Book 2021
關(guān)鍵詞Generative Adversarial Networks; GANs; Adversarial Networks; Image Generation; Generative Models; Image t
版次1
doihttps://doi.org/10.1007/978-981-33-6048-8
isbn_softcover978-981-33-6050-1
isbn_ebook978-981-33-6048-8
copyrightSpringer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書目名稱Generative Adversarial Networks for Image Generation影響因子(影響力)




書目名稱Generative Adversarial Networks for Image Generation影響因子(影響力)學科排名




書目名稱Generative Adversarial Networks for Image Generation網(wǎng)絡公開度




書目名稱Generative Adversarial Networks for Image Generation網(wǎng)絡公開度學科排名




書目名稱Generative Adversarial Networks for Image Generation被引頻次




書目名稱Generative Adversarial Networks for Image Generation被引頻次學科排名




書目名稱Generative Adversarial Networks for Image Generation年度引用




書目名稱Generative Adversarial Networks for Image Generation年度引用學科排名




書目名稱Generative Adversarial Networks for Image Generation讀者反饋




書目名稱Generative Adversarial Networks for Image Generation讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:08:46 | 只看該作者
Xudong Mao,Qing LiOffers an overview of the theoretical concepts and the current challenges of generative adversarial networks.Proposes advanced GAN image generation approaches with higher image quality and better trai
板凳
發(fā)表于 2025-3-22 04:02:54 | 只看該作者
地板
發(fā)表于 2025-3-22 06:15:29 | 只看該作者
Godwell Nhamo,Kaitano Dube,David ChikodziHe et al. 2016), object detection (Ren et al. 2015), and segmentation (Long et al. 2015). Compared with these tasks in supervised learning, however, image generation, which belongs to unsupervised learning, may not achieve the desired performance. The target of image generation is to learn to draw p
5#
發(fā)表于 2025-3-22 10:56:35 | 只看該作者
https://doi.org/10.1007/978-3-0348-8005-3: image-to-image translation, unsupervised domain adaptation, and GANs for security. One type of GANs application is for tasks that require high-quality images, such as image-to-image translation. To improve the output image quality, a discriminator is introduced to judge whether the output images a
6#
發(fā)表于 2025-3-22 13:00:25 | 只看該作者
7#
發(fā)表于 2025-3-22 18:36:24 | 只看該作者
8#
發(fā)表于 2025-3-23 01:03:09 | 只看該作者
Generative Adversarial Networks (GANs),ject detection (Ren et al. 2015), and image segmentation (Long et al. 2015). These tasks all fall into the scope of supervised learning, which means that large amounts of labeled data are provided for the learning processes. Compared with supervised learning, however, unsupervised learning shows lit
9#
發(fā)表于 2025-3-23 02:22:56 | 只看該作者
10#
發(fā)表于 2025-3-23 06:31:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
惠水县| 辽源市| 华池县| 邹城市| 攀枝花市| 淮南市| 郧西县| 楚雄市| 玉树县| 香格里拉县| 玛纳斯县| 望都县| 旬阳县| 英吉沙县| 南郑县| 县级市| 宁远县| 开封县| 华安县| 辽源市| 京山县| 盱眙县| 临沧市| 安庆市| 五华县| 文水县| 从化市| 西青区| 慈溪市| 九龙坡区| 晋宁县| 苏尼特左旗| 利川市| 凌云县| 巴楚县| 白沙| 明光市| 台前县| 泸溪县| 马山县| 永新县|