找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generative AI for Effective Software Development; Anh Nguyen-Duc,Pekka Abrahamsson,Foutse Khomh Book 2024 The Editor(s) (if applicable) an

[復(fù)制鏈接]
樓主: 猛烈抨擊
11#
發(fā)表于 2025-3-23 11:11:55 | 只看該作者
developers by enabling them to work more efficiently, speed up the learning process, and increase motivation by reducing tedious and repetitive tasks. Moreover, our results indicate a change in teamwork collaboration due to software engineers using GenAI for help instead of asking coworkers, which impacts the learning loop in agile teams.
12#
發(fā)表于 2025-3-23 17:07:56 | 只看該作者
Coefficients for Bivariate Relations,terview with them. Among the lessons learned are that the use of generative AI tools drives the adoption of additional developer tools and that developers intentionally use ChatGPT and Copilot in a complementary manner. We hope that sharing these practical experiences will help other software teams in successfully adopting generative AI tools.
13#
發(fā)表于 2025-3-23 19:33:50 | 只看該作者
An Overview on Large Language ModelsLMs and augmented LLMs. Furthermore, we delve into the evaluation of LLM research, introducing benchmark datasets and relevant tools in this context. The chapter concludes by exploring limitations in leveraging LLMs for SE tasks.
14#
發(fā)表于 2025-3-23 23:16:47 | 只看該作者
15#
發(fā)表于 2025-3-24 03:00:03 | 只看該作者
Advancing Requirements Engineering Through Generative AI: Assessing the Role of LLMsmprove the efficiency and accuracy of requirements-related tasks. We propose key directions and SWOT analysis for research and development in using LLMs for RE, focusing on the potential for requirements elicitation, analysis, specification, and validation. We further present the results from a preliminary evaluation, in this context.
16#
發(fā)表于 2025-3-24 08:19:10 | 只看該作者
Generative AI for Software Development: A Family of Studies on Code Generationiscuss the potential pitfalls of using generative AI to perform such SE tasks, as well as the quality of the code generated by these models. Finally, we explore research opportunities in harnessing generative AI, with a particular emphasis on tasks that require code generation.
17#
發(fā)表于 2025-3-24 12:55:45 | 只看該作者
18#
發(fā)表于 2025-3-24 17:48:39 | 只看該作者
19#
發(fā)表于 2025-3-24 19:49:48 | 只看該作者
20#
發(fā)表于 2025-3-25 02:39:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 15:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新龙县| 寿宁县| 沧州市| 始兴县| 桦甸市| 嘉定区| 永安市| 湛江市| 吴川市| 肥城市| 富阳市| 抚松县| 鸡西市| 舟山市| 南城县| 新源县| 云阳县| 西乌珠穆沁旗| 天津市| 饶平县| 巩义市| 承德县| 宝丰县| 凤凰县| 新竹市| 桂阳县| 博乐市| 石家庄市| 仲巴县| 永德县| 利津县| 厦门市| 潢川县| 丹巴县| 福州市| 丰县| 乳源| 普洱| 泽库县| 兴安县| 胶南市|