找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generating Families in the Restricted Three-Body Problem; Michel Hénon Book 1997 Springer-Verlag Berlin Heidelberg 1997 astronomy.bifurcat

[復制鏈接]
樓主: hypothyroidism
21#
發(fā)表于 2025-3-25 05:34:23 | 只看該作者
22#
發(fā)表于 2025-3-25 10:07:21 | 只看該作者
978-3-662-14156-4Springer-Verlag Berlin Heidelberg 1997
23#
發(fā)表于 2025-3-25 14:50:55 | 只看該作者
24#
發(fā)表于 2025-3-25 18:35:14 | 只看該作者
25#
發(fā)表于 2025-3-25 20:44:12 | 只看該作者
Generating Orbits of the First Species,plete classification has been achieved only recently with the work of Bruno (1976; 1980a; 1994, Chap. VII) on asymmetric orbits. A review of the results up to 1975 can be found in Hagihara (1975, pp. 264 to 339).
26#
發(fā)表于 2025-3-26 01:40:21 | 只看該作者
Generating Orbits of the Second Species,t is periodic, it has an infinity of collisions. (Note that there can be more than one collision per period.) The collisions separate the orbit into pieces, which we call .. Two consecutive arcs join at a collision; their tangents at the collision form an angle, generally different from zero. This a
27#
發(fā)表于 2025-3-26 04:46:23 | 只看該作者
Generating Orbits of the Third Species,es to a point. The period . can probably take any positive value (see below). Thus, generating orbits of the third species can be formally considered as forming a single one-parameter family, which we call the . This family is of a peculiar kind: all orbits are identical in shape since they reduce t
28#
發(fā)表于 2025-3-26 12:32:37 | 只看該作者
29#
發(fā)表于 2025-3-26 15:16:17 | 只看該作者
30#
發(fā)表于 2025-3-26 19:36:06 | 只看該作者
0940-7677 recipes are given. Their use is illustrated by determining a number of generating families, associated with natural families of the restricted problem, and comparing them with numerical computations in the Earth-Moon and Sun-Jupiter case.978-3-662-14156-4978-3-540-69650-6Series ISSN 0940-7677
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
湘乡市| 和静县| 济南市| 甘德县| 宝丰县| 武胜县| 信阳市| 行唐县| 应城市| 曲沃县| 巨野县| 祁连县| 东至县| 邻水| 美姑县| 通榆县| 甘泉县| 平阳县| 北安市| 翁牛特旗| 和静县| 常德市| 永宁县| 临猗县| 慈利县| 新蔡县| 莱阳市| 武山县| 治县。| 尼木县| 乌拉特后旗| 东至县| 栾川县| 吉安市| 桑植县| 襄城县| 沙洋县| 乐安县| 新乡县| 肇州县| 海城市|