找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generating Families in the Restricted Three-Body Problem; Michel Hénon Book 1997 Springer-Verlag Berlin Heidelberg 1997 astronomy.bifurcat

[復制鏈接]
樓主: hypothyroidism
21#
發(fā)表于 2025-3-25 05:34:23 | 只看該作者
22#
發(fā)表于 2025-3-25 10:07:21 | 只看該作者
978-3-662-14156-4Springer-Verlag Berlin Heidelberg 1997
23#
發(fā)表于 2025-3-25 14:50:55 | 只看該作者
24#
發(fā)表于 2025-3-25 18:35:14 | 只看該作者
25#
發(fā)表于 2025-3-25 20:44:12 | 只看該作者
Generating Orbits of the First Species,plete classification has been achieved only recently with the work of Bruno (1976; 1980a; 1994, Chap. VII) on asymmetric orbits. A review of the results up to 1975 can be found in Hagihara (1975, pp. 264 to 339).
26#
發(fā)表于 2025-3-26 01:40:21 | 只看該作者
Generating Orbits of the Second Species,t is periodic, it has an infinity of collisions. (Note that there can be more than one collision per period.) The collisions separate the orbit into pieces, which we call .. Two consecutive arcs join at a collision; their tangents at the collision form an angle, generally different from zero. This a
27#
發(fā)表于 2025-3-26 04:46:23 | 只看該作者
Generating Orbits of the Third Species,es to a point. The period . can probably take any positive value (see below). Thus, generating orbits of the third species can be formally considered as forming a single one-parameter family, which we call the . This family is of a peculiar kind: all orbits are identical in shape since they reduce t
28#
發(fā)表于 2025-3-26 12:32:37 | 只看該作者
29#
發(fā)表于 2025-3-26 15:16:17 | 只看該作者
30#
發(fā)表于 2025-3-26 19:36:06 | 只看該作者
0940-7677 recipes are given. Their use is illustrated by determining a number of generating families, associated with natural families of the restricted problem, and comparing them with numerical computations in the Earth-Moon and Sun-Jupiter case.978-3-662-14156-4978-3-540-69650-6Series ISSN 0940-7677
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
霸州市| 张家港市| 兴山县| 菏泽市| 苗栗县| 龙门县| 恩施市| 西和县| 沈阳市| 天镇县| 阳泉市| 呼图壁县| 甘泉县| 启东市| 孙吴县| 扬州市| 锦州市| 前郭尔| 泸定县| 芦溪县| 垣曲县| 渭南市| 榕江县| 安溪县| 任丘市| 苏尼特左旗| 遂溪县| 嘉禾县| 兴和县| 石首市| 和硕县| 潍坊市| 张北县| 阿拉善左旗| 卫辉市| 错那县| 葵青区| 武清区| 潜山县| 扶余县| 隆回县|