找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Solutions of First Order PDEs; The Dynamical Optimi Andre? I. Subbotin Book 1995 Springer Science+Business Media New York 1995

[復(fù)制鏈接]
查看: 55542|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:02:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Generalized Solutions of First Order PDEs
副標(biāo)題The Dynamical Optimi
編輯Andre? I. Subbotin
視頻videohttp://file.papertrans.cn/383/382253/382253.mp4
叢書名稱Systems & Control: Foundations & Applications
圖書封面Titlebook: Generalized Solutions of First Order PDEs; The Dynamical Optimi Andre? I. Subbotin Book 1995 Springer Science+Business Media New York 1995
出版日期Book 1995
關(guān)鍵詞equation; function; mathematics; optimal control; optimization; partial differential equations
版次1
doihttps://doi.org/10.1007/978-1-4612-0847-1
isbn_softcover978-1-4612-6920-5
isbn_ebook978-1-4612-0847-1Series ISSN 2324-9749 Series E-ISSN 2324-9757
issn_series 2324-9749
copyrightSpringer Science+Business Media New York 1995
The information of publication is updating

書目名稱Generalized Solutions of First Order PDEs影響因子(影響力)




書目名稱Generalized Solutions of First Order PDEs影響因子(影響力)學(xué)科排名




書目名稱Generalized Solutions of First Order PDEs網(wǎng)絡(luò)公開度




書目名稱Generalized Solutions of First Order PDEs網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Generalized Solutions of First Order PDEs被引頻次




書目名稱Generalized Solutions of First Order PDEs被引頻次學(xué)科排名




書目名稱Generalized Solutions of First Order PDEs年度引用




書目名稱Generalized Solutions of First Order PDEs年度引用學(xué)科排名




書目名稱Generalized Solutions of First Order PDEs讀者反饋




書目名稱Generalized Solutions of First Order PDEs讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:55:21 | 只看該作者
,Cauchy Problems for Hamilton—Jacobi Equations,blems can be proved. The Cauchy problem for Hamilton-Jacobi equation is examined in this chapter. Proofs of uniqueness and existence theorems are based on the property of weak invariance of minimax solutions with respect to characteristic inclusions. These inclusions are considered in the present se
板凳
發(fā)表于 2025-3-22 00:43:57 | 只看該作者
地板
發(fā)表于 2025-3-22 08:35:40 | 只看該作者
Victor Nussenzweig,Carolyn S. Pincus next sections. It can be seen from the proofs that these theorems actually provide criteria for the stability of solutions with respect to small perturbations of the Hamiltonian and the terminal function.
5#
發(fā)表于 2025-3-22 09:49:55 | 只看該作者
6#
發(fā)表于 2025-3-22 13:33:04 | 只看該作者
,Cauchy Problems for Hamilton—Jacobi Equations, next sections. It can be seen from the proofs that these theorems actually provide criteria for the stability of solutions with respect to small perturbations of the Hamiltonian and the terminal function.
7#
發(fā)表于 2025-3-22 17:19:27 | 只看該作者
Differential Games,esence of disturbances. As an illustration we can mention the problems of control of an aircraft landing and takeoff in the presence of the so-called windshear, when the aircraft is subjected to wind bursts. Analysis of differential games can help in elaboration of control algorithms for this and similar problems.
8#
發(fā)表于 2025-3-23 01:17:13 | 只看該作者
Monoclonal Antibodies to Tumor Antigens,istic inclusions. This property can be given with the help of apparently different criteria, which are formulated in Sections 2 and 3. The equivalence of these criteria and the equivalence of minimax and viscosity solutions are proven in Section 4.
9#
發(fā)表于 2025-3-23 02:05:49 | 只看該作者
10#
發(fā)表于 2025-3-23 05:40:21 | 只看該作者
Antigen-Binding Receptors on Lymphocytes,The minimax solution approach can be used for studying various types of first-order PDE’s with boundary and terminal (initial) conditions. In Chapter II, results concerning Cauchy problems for Hamilton-Jacobi equations were presented. In this chapter we consider some other applications of the approach.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苏州市| 绥化市| 博白县| 社旗县| 昭平县| 正蓝旗| 都昌县| 高淳县| 万载县| 米脂县| 马尔康县| 敦化市| 孝感市| 安龙县| 托里县| 福贡县| 和田市| 白河县| 梓潼县| 区。| 宜川县| 绵竹市| 宿州市| 宁晋县| 陵水| 镇康县| 南丰县| 改则县| 大余县| 军事| 毕节市| 北流市| 河间市| 洪泽县| 越西县| 武夷山市| 延川县| 台湾省| 崇礼县| 九龙县| 天祝|