找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Polygons; Hendrik Maldeghem Book 1998 Springer Basel AG 1998 Geometry.3D.3D graphics.algebraic topology.character.classificati

[復(fù)制鏈接]
樓主: Covenant
21#
發(fā)表于 2025-3-25 03:56:01 | 只看該作者
22#
發(fā)表于 2025-3-25 09:44:14 | 只看該作者
Topological Polygons,aracterizing these geometries (in .’s foundations of geometry [1899], the necessary topological assumptions are disguised in terms of orderings; in order to include ? and O, . [1932] states topological axioms: compactness, connectedness).
23#
發(fā)表于 2025-3-25 14:45:20 | 只看該作者
24#
發(fā)表于 2025-3-25 16:41:39 | 只看該作者
Contemporary Issues in International Lawr, we aim at a description (but not proof) of a characterization of all these examples. Namely, they are the only polygons satisfying the Moufang condition; see Definitions 4.4.4 on page 143. The main results are due to . [1976a], [1976b], [19**], [1979], [1983], [1994a], . [1979] and . & . [19.]. . [1977] has also made a contribution.
25#
發(fā)表于 2025-3-25 22:50:45 | 只看該作者
https://doi.org/10.1007/978-1-349-24303-7aracterizing these geometries (in .’s foundations of geometry [1899], the necessary topological assumptions are disguised in terms of orderings; in order to include ? and O, . [1932] states topological axioms: compactness, connectedness).
26#
發(fā)表于 2025-3-26 03:04:23 | 只看該作者
27#
發(fā)表于 2025-3-26 08:09:59 | 只看該作者
The Moufang Condition,r, we aim at a description (but not proof) of a characterization of all these examples. Namely, they are the only polygons satisfying the Moufang condition; see Definitions 4.4.4 on page 143. The main results are due to . [1976a], [1976b], [19**], [1979], [1983], [1994a], . [1979] and . & . [19.]. . [1977] has also made a contribution.
28#
發(fā)表于 2025-3-26 11:36:58 | 只看該作者
29#
發(fā)表于 2025-3-26 16:13:06 | 只看該作者
https://doi.org/10.1007/978-3-0348-8827-1Geometry; 3D; 3D graphics; algebraic topology; character; classification; Eigenvalue; Finite; Geometrie; grou
30#
發(fā)表于 2025-3-26 17:25:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乾安县| 临泽县| 轮台县| 东乡族自治县| 宕昌县| 清丰县| 汉源县| 宜阳县| 安泽县| 金湖县| 玛纳斯县| 漯河市| 海盐县| 玉林市| 沈阳市| 兴城市| 图们市| 怀化市| 宝兴县| 永城市| 潍坊市| 柳江县| 磐安县| 泽库县| 桂东县| 宽甸| 襄垣县| 江源县| 佳木斯市| 永济市| 井冈山市| 桦川县| 绵阳市| 工布江达县| 姜堰市| 梅州市| 深圳市| 连州市| 都江堰市| 武宣县| 石狮市|