找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Lorenz-Mie Theories; Gérard Gouesbet,Gérard Gréhan Book 20172nd edition Springer International Publishing AG 2017 GLMT.Gaussia

[復(fù)制鏈接]
樓主: Jejunum
11#
發(fā)表于 2025-3-23 11:38:01 | 只看該作者
12#
發(fā)表于 2025-3-23 15:39:48 | 只看該作者
13#
發(fā)表于 2025-3-23 19:58:58 | 只看該作者
Conclusions: The Need for a Products Policy,Some allusions or brief discussions concerning applications of GLMTs have already been provided (and will not be necessarily repeated here). This chapter, to be viewed as, and written as, a complement, is devoted to a more systematic and exhaustive exposition of such applications. Complementary miscellaneous issues will also be discussed.
14#
發(fā)表于 2025-3-23 23:54:16 | 只看該作者
15#
發(fā)表于 2025-3-24 05:01:07 | 只看該作者
16#
發(fā)表于 2025-3-24 08:26:05 | 只看該作者
,Generalized Lorenz–Mie Theory in the Strict Sense, and Other GLMTs,The general version of GLMT (in the strict sense, i.e. when the scaterer is a sphere defined by its diameter . and its complex refractive index .) has been exposed in [2, 89].
17#
發(fā)表于 2025-3-24 12:02:30 | 只看該作者
18#
發(fā)表于 2025-3-24 17:10:43 | 只看該作者
19#
發(fā)表于 2025-3-24 21:33:41 | 只看該作者
Special Cases of Axisymmetric and Gaussian Beams,We define an axisymmetric beam [74] (Gouesbet, Applied Optics 35(9), 1543–1555, 1996) to be a beam for which the .-component . of the Poynting vector, in which . is the direction of propagation of the beam, does not depend on the azimuthal angle ., in suitably chosen coordinate systems.
20#
發(fā)表于 2025-3-24 23:12:42 | 只看該作者
The Localized Approximation and Localized Beam Models,Beside more or less classical mathematical functions, numerical computations for GLMT require accurate enough computations of BSCs . or . describing the incident beam.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂伦春自治旗| 乌苏市| 南陵县| 合川市| 南皮县| 福建省| 忻城县| 嘉善县| 上杭县| 上林县| 阜南县| 廉江市| 宣汉县| 泸州市| 庄浪县| 高雄市| 西乌珠穆沁旗| 三台县| 苍溪县| 随州市| 湘乡市| 雷波县| 合肥市| 怀来县| 贺兰县| 达日县| 阳朔县| 四平市| 绿春县| 宜昌市| 灵台县| 古丈县| 肥西县| 赤水市| 山阴县| 淅川县| 贵南县| 铜鼓县| 简阳市| 历史| 庆元县|