找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Lorenz-Mie Theories; Gérard Gouesbet,Gérard Gréhan Book 2023Latest edition Springer Nature Switzerland AG 2023 GLMT.Gaussian B

[復(fù)制鏈接]
樓主: corrupt
11#
發(fā)表于 2025-3-23 12:00:47 | 只看該作者
12#
發(fā)表于 2025-3-23 14:22:06 | 只看該作者
Constructivism in Science EducationBeside more or less classical mathematical functions, numerical computations for GLMT require accurate enough computations of BSCs . or . describing the incident beam.
13#
發(fā)表于 2025-3-23 20:06:18 | 只看該作者
14#
發(fā)表于 2025-3-24 01:22:58 | 只看該作者
Consular Authority Specifically Defined,The aim of the present book has been to provide a background in GLMT, allowing presumably a rather easy access to archival literature in journals and conference proceedings.
15#
發(fā)表于 2025-3-24 05:11:05 | 只看該作者
,Resolution of Special Maxwell’s Equations,In this chapter we present solutions of Maxwell’s equations for time-harmonic waves in l.l.h.i. media. Hence, the starting point is Sect.?1.2. Again, one of our recurrent choice will be to introduce special cases as late as possible in the chain of the resolution of Maxwell’s equations.
16#
發(fā)表于 2025-3-24 09:26:58 | 只看該作者
,Generalized Lorenz–Mie Theory in the Strict Sense, and Other GLMTs,The general version of GLMT (in the strict sense, i.e. when the scaterer is a sphere defined by its diameter . and its complex refractive index .) has been exposed in [2, 89].
17#
發(fā)表于 2025-3-24 11:02:24 | 只看該作者
18#
發(fā)表于 2025-3-24 17:45:51 | 只看該作者
19#
發(fā)表于 2025-3-24 21:22:59 | 只看該作者
20#
發(fā)表于 2025-3-24 23:34:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌兰浩特市| 莱西市| 博兴县| 寻甸| 康定县| 长治市| 仪征市| 奉贤区| 博兴县| 福州市| 大田县| 呼伦贝尔市| 通化市| 承德县| 三江| 沁水县| 琼结县| 湘潭市| 顺昌县| 延安市| 庆云县| 讷河市| 搜索| 定安县| 陵川县| 金寨县| 五峰| 开远市| 政和县| 莱阳市| 澎湖县| 乐安县| 绥德县| 句容市| 万州区| 禄丰县| 彩票| 太保市| 米脂县| 府谷县| 五指山市|