找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Inverses; Theory and Applicati Adi Ben-Israel,Thomas N. E. Greville Textbook 2003Latest edition Springer Science+Business Media

[復(fù)制鏈接]
查看: 21771|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:23:14 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Generalized Inverses
副標(biāo)題Theory and Applicati
編輯Adi Ben-Israel,Thomas N. E. Greville
視頻videohttp://file.papertrans.cn/383/382216/382216.mp4
叢書名稱CMS Books in Mathematics
圖書封面Titlebook: Generalized Inverses; Theory and Applicati Adi Ben-Israel,Thomas N. E. Greville Textbook 2003Latest edition Springer Science+Business Media
描述1. The Inverse of a Nonsingular Matrix It is well known that every nonsingular matrix A has a unique inverse, ?1 denoted by A , such that ?1 ?1 AA = A A =I, (1) where I is the identity matrix. Of the numerous properties of the inverse matrix, we mention a few. Thus, ?1 ?1 (A ) = A, T ?1 ?1 T (A ) =(A ) , ? ?1 ?1 ? (A ) =(A ) , ?1 ?1 ?1 (AB) = B A , T ? where A and A , respectively, denote the transpose and conjugate tra- pose of A. It will be recalled that a real or complex number ? is called an eigenvalue of a square matrix A, and a nonzero vector x is called an eigenvector of A corresponding to ?,if Ax = ?x. ?1 Another property of the inverse A is that its eigenvalues are the recip- cals of those of A. 2. Generalized Inverses of Matrices A matrix has an inverse only if it is square, and even then only if it is nonsingular or, in other words, if its columns (or rows) are linearly in- pendent. In recent years needs have been felt in numerous areas of applied mathematics for some kind of partial inverse of a matrix that is singular or even rectangular.
出版日期Textbook 2003Latest edition
關(guān)鍵詞Eigenvalue; Eigenvector; Hilbert space; Matrix; applied mathematics; field; matrices; spectral theory; matri
版次2
doihttps://doi.org/10.1007/b97366
isbn_softcover978-1-4419-1814-7
isbn_ebook978-0-387-21634-8Series ISSN 1613-5237 Series E-ISSN 2197-4152
issn_series 1613-5237
copyrightSpringer Science+Business Media New York 2003
The information of publication is updating

書目名稱Generalized Inverses影響因子(影響力)




書目名稱Generalized Inverses影響因子(影響力)學(xué)科排名




書目名稱Generalized Inverses網(wǎng)絡(luò)公開度




書目名稱Generalized Inverses網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Generalized Inverses被引頻次




書目名稱Generalized Inverses被引頻次學(xué)科排名




書目名稱Generalized Inverses年度引用




書目名稱Generalized Inverses年度引用學(xué)科排名




書目名稱Generalized Inverses讀者反饋




書目名稱Generalized Inverses讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:10:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:00:45 | 只看該作者
Existence and Construction of Generalized Inverses,
地板
發(fā)表于 2025-3-22 08:38:46 | 只看該作者
Linear Systems and Characterization of Generalized Inverses,
5#
發(fā)表于 2025-3-22 10:04:16 | 只看該作者
Generalized Inverses of Linear Operators between Hilbert Spaces,
6#
發(fā)表于 2025-3-22 13:43:56 | 只看該作者
978-1-4419-1814-7Springer Science+Business Media New York 2003
7#
發(fā)表于 2025-3-22 19:50:23 | 只看該作者
Generalized Inverses978-0-387-21634-8Series ISSN 1613-5237 Series E-ISSN 2197-4152
8#
發(fā)表于 2025-3-22 23:53:55 | 只看該作者
9#
發(fā)表于 2025-3-23 03:15:43 | 只看該作者
1613-5237 ?1 AA = A A =I, (1) where I is the identity matrix. Of the numerous properties of the inverse matrix, we mention a few. Thus, ?1 ?1 (A ) = A, T ?1 ?1 T (A ) =(A ) , ? ?1 ?1 ? (A ) =(A ) , ?1 ?1 ?1 (AB) = B A , T ? where A and A , respectively, denote the transpose and conjugate tra- pose of A. It w
10#
發(fā)表于 2025-3-23 07:04:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九龙城区| 隆昌县| 雅安市| 大安市| 祁连县| 襄汾县| 怀化市| 水富县| 吉水县| 蓬安县| 无为县| 山西省| 突泉县| 朝阳区| 体育| 平安县| 祁东县| 莲花县| 汤原县| 竹北市| 青川县| 德格县| 河西区| 敦化市| 都匀市| 沭阳县| 临澧县| 天津市| 瓦房店市| 渭源县| 鄂州市| 宜兰市| 旅游| 高阳县| 遵化市| 乌恰县| 德令哈市| 灵武市| 安顺市| 盐津县| 利津县|