找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Homogeneity in Systems and Control; Andrey Polyakov Book 20201st edition Springer Nature Switzerland AG 2020 Homogeneous Syste

[復(fù)制鏈接]
樓主: Corrugate
11#
發(fā)表于 2025-3-23 12:13:44 | 只看該作者
12#
發(fā)表于 2025-3-23 15:01:38 | 只看該作者
13#
發(fā)表于 2025-3-23 21:35:25 | 只看該作者
14#
發(fā)表于 2025-3-23 23:59:42 | 只看該作者
Evaluation of conservation interest,A homogeneity-based approach to the stability, regularity, and robustness analysis of dynamical systems in finite-dimensional and infinite-dimensional spaces is introduced in this chapter. In particular,
15#
發(fā)表于 2025-3-24 05:45:04 | 只看該作者
https://doi.org/10.1007/978-1-4020-9278-7This chapter deals with homogeneous stabilization of evolution systems. We design finite-time and fixed-time stabilizing homogeneous control laws for linear and nonlinear evolution equations in Hilbert and Euclidean spaces.
16#
發(fā)表于 2025-3-24 08:47:36 | 只看該作者
17#
發(fā)表于 2025-3-24 13:26:25 | 只看該作者
Infinite-Dimensional ModelsThe theory of evolution equations proposes a unified approach to a modeling and an analysis of dynamical systems governed by generalized differential laws. A state vector . in this case is an element of an infinite-dimensional Banach (or Hilbert) space ..
18#
發(fā)表于 2025-3-24 15:00:07 | 只看該作者
Homogeneous MappingsThis chapter introduces .-homogeneous operators and functionals in both finite-dimensional and infinite-dimensional spaces. The so-called canonical homogeneous norm in a Banach space . is studied. Several important properties of homogeneous mappings are obtained.
19#
發(fā)表于 2025-3-24 23:03:51 | 只看該作者
Analysis of Homogeneous Dynamical SystemsA homogeneity-based approach to the stability, regularity, and robustness analysis of dynamical systems in finite-dimensional and infinite-dimensional spaces is introduced in this chapter. In particular,
20#
發(fā)表于 2025-3-25 00:25:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 15:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沾益县| 泰州市| 江口县| 乌兰察布市| 嘉祥县| 辉县市| 云和县| 康乐县| 栖霞市| 崇仁县| 奉节县| 临颍县| 井冈山市| 武功县| 东山县| 北川| 珠海市| 黔西| 邵武市| 富锦市| 梁河县| 交城县| 夏津县| 太谷县| 运城市| 鄯善县| 信宜市| 镇雄县| 德惠市| 安丘市| 顺昌县| 姜堰市| 德惠市| 准格尔旗| 肥西县| 沅陵县| 定安县| 桃源县| 仁寿县| 措美县| 凤庆县|