找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces; Jürgen Berndt,Franco Tricerri,Lieven Vanhecke Book 1995 Springer-Verlag Ber

[復(fù)制鏈接]
查看: 27412|回復(fù): 35
樓主
發(fā)表于 2025-3-21 20:06:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces
編輯Jürgen Berndt,Franco Tricerri,Lieven Vanhecke
視頻videohttp://file.papertrans.cn/383/382211/382211.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces;  Jürgen Berndt,Franco Tricerri,Lieven Vanhecke Book 1995 Springer-Verlag Ber
描述Generalized Heisenberg groups, or H-type groups, introduced by A. Kaplan, and Damek-Ricci harmonic spaces are particularly nice Lie groups with a vast spectrum of properties and applications. These harmonic spaces are homogeneous Hadamard manifolds containing the H-type groups as horospheres..These notes contain a thorough study of their Riemannian geometry by means of a detailed treatment of their Jacobi vector fields and Jacobi operators. Some problems are included and will hopefully stimulate further research on these spaces. The book is written for students and researchers, assuming only basic knowledge of Riemannian geometry, and it contains a brief survey of the background material needed to follow the entire treatment.
出版日期Book 1995
關(guān)鍵詞Generalized Heisenberg groups; Riemannian geometry; geodesic spheres; geodesic symmetries; harmonic spac
版次1
doihttps://doi.org/10.1007/BFb0076902
isbn_softcover978-3-540-59001-9
isbn_ebook978-3-540-49171-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1995
The information of publication is updating

書目名稱Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces影響因子(影響力)




書目名稱Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces影響因子(影響力)學(xué)科排名




書目名稱Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces網(wǎng)絡(luò)公開度




書目名稱Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces被引頻次




書目名稱Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces被引頻次學(xué)科排名




書目名稱Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces年度引用




書目名稱Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces年度引用學(xué)科排名




書目名稱Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces讀者反饋




書目名稱Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:37:16 | 只看該作者
0075-8434 ing only basic knowledge of Riemannian geometry, and it contains a brief survey of the background material needed to follow the entire treatment.978-3-540-59001-9978-3-540-49171-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
板凳
發(fā)表于 2025-3-22 02:58:02 | 只看該作者
地板
發(fā)表于 2025-3-22 07:32:11 | 只看該作者
5#
發(fā)表于 2025-3-22 10:17:57 | 只看該作者
Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces
6#
發(fā)表于 2025-3-22 15:00:16 | 只看該作者
7#
發(fā)表于 2025-3-22 17:35:55 | 只看該作者
978-3-540-59001-9Springer-Verlag Berlin Heidelberg 1995
8#
發(fā)表于 2025-3-22 22:35:38 | 只看該作者
9#
發(fā)表于 2025-3-23 03:23:12 | 只看該作者
10#
發(fā)表于 2025-3-23 07:16:53 | 只看該作者
on is required for legitimate international intervention. Systematic approaches grounded in norms are particularly important for international interventions to prevent or manage conflict, since such approaches would help to establish precedents and principles in a post-cold war world that is still largely in search of such certainties.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
格尔木市| 淮阳县| 巧家县| 洪泽县| 淮北市| 秀山| 蓝田县| 蓝山县| 新津县| 黄大仙区| 龙岩市| 紫金县| 富源县| 陆河县| 陆丰市| 松阳县| 安庆市| 武川县| 西平县| 克什克腾旗| 水富县| 讷河市| 静海县| 渭南市| 岑溪市| 彩票| 新田县| 文水县| 孝感市| 介休市| 兴安县| 乾安县| 东兰县| 辽宁省| 武穴市| 金阳县| 清河县| 丹阳市| 沁阳市| 叙永县| 马关县|