找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Functions and Fourier Analysis; Dedicated to Stevan Michael Oberguggenberger,Joachim Toft,Patrik Wahlb Book 2017 Springer Inte

[復(fù)制鏈接]
樓主: 人工合成
31#
發(fā)表于 2025-3-26 21:01:55 | 只看該作者
An Observation of the Subspaces of ,,polynomials. The proof is a combination of the fact in the textbook by Treves and the well-known bipolar theorem. In this paper by extending slightly the idea employed in [5], we give an alternative proof of this fact and then we extend this proposition so that we can include some related function spaces.
32#
發(fā)表于 2025-3-27 03:23:11 | 只看該作者
33#
發(fā)表于 2025-3-27 07:44:58 | 只看該作者
,Eigenvalue Problems of Toeplitz Operators in Bargmann–Fock Spaces,rify the relationship between Toeplitz operators in Bargmann–Fock spaces and Daubechies operators in L.(?.). As application of our results, we will give a new proof of the formula of the eigenvalues of Daubechies operators with polyradial symbols.
34#
發(fā)表于 2025-3-27 10:09:43 | 只看該作者
35#
發(fā)表于 2025-3-27 14:07:41 | 只看該作者
0255-0156 o-Differential Operators (IGPDO) and on Generalized Functions (IGGF), notably on the longstanding collaboration of these groups within ISAAC..978-3-319-84776-4978-3-319-51911-1Series ISSN 0255-0156 Series E-ISSN 2296-4878
36#
發(fā)表于 2025-3-27 20:17:07 | 只看該作者
37#
發(fā)表于 2025-3-27 23:09:56 | 只看該作者
The Dynamic Wind-Pollinated Mating Systemcretely layered media are shown to converge to limits as the time step goes to zero (almost surely pointwise almost everywhere). This translates into limits in the Fourier integral operator representations.
38#
發(fā)表于 2025-3-28 05:45:53 | 只看該作者
Transport in a Stochastic Goupillaud Medium,cretely layered media are shown to converge to limits as the time step goes to zero (almost surely pointwise almost everywhere). This translates into limits in the Fourier integral operator representations.
39#
發(fā)表于 2025-3-28 08:58:21 | 只看該作者
40#
發(fā)表于 2025-3-28 14:29:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凯里市| 阳城县| 铁岭县| 布尔津县| 临沧市| 苏尼特左旗| 武乡县| 永善县| 东莞市| 突泉县| 柳林县| 东宁县| 台湾省| 和平区| 普兰县| 日喀则市| 社会| 鄂温| 祥云县| 涞水县| 丰镇市| 海宁市| 玉环县| 河东区| 耿马| 略阳县| 云霄县| 宁海县| 淮滨县| 健康| 宾川县| 祁门县| 碌曲县| 景泰县| 恩平市| 新河县| 彭州市| 都兰县| 收藏| 疏勒县| 建平县|