找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Functions and Fourier Analysis; Dedicated to Stevan Michael Oberguggenberger,Joachim Toft,Patrik Wahlb Book 2017 Springer Inte

[復制鏈接]
樓主: 人工合成
11#
發(fā)表于 2025-3-23 09:54:39 | 只看該作者
Axel Bichler,Volker Trommsdorffprincipal symbol being a symbol of principal type near some characteristic point (i.e., vanishing at a part of the characteristic set). We prove (micro)local non-solvability results as well as subelliptic estimates in the second case when the loss of regularity is of the following type: .. For the o
12#
發(fā)表于 2025-3-23 14:33:00 | 只看該作者
polynomials. The proof is a combination of the fact in the textbook by Treves and the well-known bipolar theorem. In this paper by extending slightly the idea employed in [5], we give an alternative proof of this fact and then we extend this proposition so that we can include some related function s
13#
發(fā)表于 2025-3-23 18:43:15 | 只看該作者
14#
發(fā)表于 2025-3-23 23:34:05 | 只看該作者
G. Zerbi,M. Gussoni,C. Castiglioniarameterized by real numbers. We show that continuity properties in the framework of modulation space theory, valid for the Shubin’s family extend to the broader matrix parameterized family of pseudo-differential calculi.
15#
發(fā)表于 2025-3-24 05:47:37 | 只看該作者
Oliver Gassmann,Fabrizio Ferrandinarify the relationship between Toeplitz operators in Bargmann–Fock spaces and Daubechies operators in L.(?.). As application of our results, we will give a new proof of the formula of the eigenvalues of Daubechies operators with polyradial symbols.
16#
發(fā)表于 2025-3-24 08:06:38 | 只看該作者
17#
發(fā)表于 2025-3-24 11:34:48 | 只看該作者
Michael Oberguggenberger,Joachim Toft,Patrik WahlbGives and up-to-date overview on the convergence and joint progress of Generalized Functions and Fourier Analysis.Joint collaboration of IAGF, IGPDO and IGGF.Dedicated to Prof. Stevan Pilipovic
18#
發(fā)表于 2025-3-24 18:49:51 | 只看該作者
Coniferen im Westlichen Malayischen ArchipelWe consider quasi-Banach spaces that lie between a Gelfand–Shilov space, or more generally, Pilipovi′c space, ., and its dual, . . We prove that for such quasi-Banach space ., there are convenient Hilbert spaces, ., with normalized Hermite functions as orthonormal bases and such that . lies between ., and the latter spaces lie between ..
19#
發(fā)表于 2025-3-24 23:02:36 | 只看該作者
20#
發(fā)表于 2025-3-25 00:29:12 | 只看該作者
https://doi.org/10.1057/9781137492975We prove that an ultradistribution is rotation invariant if and only if it coincides with its spherical mean. For it, we study the problem of spherical representations of ultradistributions on ?.. Our results apply to both the quasianalytic and the non-quasianalytic case.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 21:12
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
于都县| 团风县| 同心县| 旺苍县| 湘乡市| 漳州市| 达孜县| 台南市| 漠河县| 曲阜市| 双城市| 曲阜市| 临海市| 海阳市| 抚州市| 德兴市| 稷山县| 双桥区| 赫章县| 得荣县| 泸水县| 益阳市| 漳浦县| 吴桥县| 宁蒗| 八宿县| 南阳市| 霍邱县| 营口市| 肃北| 四川省| 武陟县| 绥棱县| 榆中县| 马鞍山市| 蕉岭县| 多伦县| 衡南县| 鸡泽县| 当阳市| 库尔勒市|