找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Functions Theory and Technique; Theory and Technique Ram P. Kanwal Book 19982nd edition Birkh?user Boston 1998 Boundary value p

[復(fù)制鏈接]
樓主: Novice
11#
發(fā)表于 2025-3-23 11:16:26 | 只看該作者
12#
發(fā)表于 2025-3-23 15:24:19 | 只看該作者
https://doi.org/10.1007/978-3-319-44577-9mptotic evaluation of divergent integrals, boundary layer theory and singular perturbations. Our aim in this chapter is to present the basic concepts of their methods and illustrate them with representative examples.
13#
發(fā)表于 2025-3-23 20:19:20 | 只看該作者
14#
發(fā)表于 2025-3-23 23:50:31 | 只看該作者
15#
發(fā)表于 2025-3-24 04:49:57 | 只看該作者
16#
發(fā)表于 2025-3-24 10:19:35 | 只看該作者
17#
發(fā)表于 2025-3-24 14:44:39 | 只看該作者
Congenital Pseudarthrosis of the Clavicleproduct of the distributions .(.) ∈ .′. and .(.) ∈ .′. according to (1),.and check whether the right side of this equation defines a linear continuous functional over .. For this purpose, we prove the following lemma:.(.) = <.(.), .(.)>, . ∈ .′.(.) ∈ ., ., . (., .,..., .) . {.(.)} → .(.) . → ∞, .(.) = {<.(.), .(.)>} → .(.) . → ∞.
18#
發(fā)表于 2025-3-24 17:42:51 | 只看該作者
Direct Products and Convolutions of Distributions,product of the distributions .(.) ∈ .′. and .(.) ∈ .′. according to (1),.and check whether the right side of this equation defines a linear continuous functional over .. For this purpose, we prove the following lemma:.(.) = <.(.), .(.)>, . ∈ .′.(.) ∈ ., ., . (., .,..., .) . {.(.)} → .(.) . → ∞, .(.) = {<.(.), .(.)>} → .(.) . → ∞.
19#
發(fā)表于 2025-3-24 19:54:27 | 只看該作者
Applications to Wave Propagation,ul method of attacking these problems is to embed them in the whole space. This is achieved by extending the solution to the other side of the surface in some suitable fashion, as we did in deriving the Poisson integral formula in Chapter 10. We then obtain a regular singular function that satisfies
20#
發(fā)表于 2025-3-25 01:14:07 | 只看該作者
https://doi.org/10.1007/978-1-4613-8315-4ul method of attacking these problems is to embed them in the whole space. This is achieved by extending the solution to the other side of the surface in some suitable fashion, as we did in deriving the Poisson integral formula in Chapter 10. We then obtain a regular singular function that satisfies
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临西县| 许昌市| 临夏市| 曲阜市| 彩票| 霍城县| 叶城县| 招远市| 武功县| 宁海县| 当阳市| 张家界市| 厦门市| 沈阳市| 会宁县| 湘西| 湘阴县| 清水河县| 海原县| 油尖旺区| 龙门县| 河西区| 文昌市| 清河县| 南澳县| 咸丰县| 宁强县| 巴彦县| 苍溪县| 门源| 桂林市| 札达县| 安徽省| 安西县| 扬州市| 兴宁市| 洛阳市| 信宜市| 方城县| 桂阳县| 石嘴山市|