找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Fractional Calculus; New Advancements and George A. Anastassiou Book 2021 The Editor(s) (if applicable) and The Author(s), unde

[復制鏈接]
樓主: interminable
31#
發(fā)表于 2025-3-27 00:50:39 | 只看該作者
Congenital Anomalies of the Penisgeneralized and iterated left and right: fractional Poincaré type inequalities, fractional Opial type inequalities and fractional Hilbert–Pachpatte inequalities. All these inequalities are very general having in their background Bochner type integrals. See also[.].
32#
發(fā)表于 2025-3-27 03:42:01 | 只看該作者
33#
發(fā)表于 2025-3-27 06:14:44 | 只看該作者
Iterated ,-Fractional Vector Bochner Integral Representation Formulae and Inequalities for Banach Sgeneralized and iterated left and right: fractional Poincaré type inequalities, fractional Opial type inequalities and fractional Hilbert–Pachpatte inequalities. All these inequalities are very general having in their background Bochner type integrals. See also[.].
34#
發(fā)表于 2025-3-27 10:12:58 | 只看該作者
35#
發(fā)表于 2025-3-27 13:48:26 | 只看該作者
36#
發(fā)表于 2025-3-27 20:38:26 | 只看該作者
37#
發(fā)表于 2025-3-28 01:48:31 | 只看該作者
Trigonometric Caputo Fractional Approximation of Stochastic Processes, derivatives of the engaged stochastic process, ., .. The impressive fact is that only two basic real Korovkin test functions assumptions, one of them trigonometric, are enough for the conclusions of our trigonometric fractional stochastic Korovkin theory. We give applications to stochastic Bernstei
38#
發(fā)表于 2025-3-28 05:45:09 | 只看該作者
39#
發(fā)表于 2025-3-28 06:18:46 | 只看該作者
40#
發(fā)表于 2025-3-28 12:19:07 | 只看該作者
Hilton P. Gottschalk,Michael S. Bednar generalized .-direct and iterated fractional derivatives, built in vector moduli of continuity. We treat wide and general classes of Banach space valued functions. We give applications to vectorial Bernstein operators. See also[.].
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
石狮市| 乌鲁木齐县| 舒城县| 太白县| 扎兰屯市| 民丰县| 澄迈县| 张北县| 无棣县| 容城县| 阳城县| 崇文区| 长子县| 藁城市| 金川县| 奎屯市| 乌恰县| 札达县| 永州市| 阳春市| 兴安县| 崇明县| 临城县| 韩城市| 沁阳市| 七台河市| 高台县| 白沙| 越西县| 景德镇市| 准格尔旗| 晴隆县| 新绛县| 鹰潭市| 泾源县| 嘉兴市| 南充市| 河津市| 锡林浩特市| 太康县| 商南县|