找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Convexity and Vector Optimization; Shashi Kant Mishra,Shou-Yang Wang,Kin Keung Lai Book 2009 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: 劉興旺
21#
發(fā)表于 2025-3-25 06:03:39 | 只看該作者
22#
發(fā)表于 2025-3-25 10:21:37 | 只看該作者
23#
發(fā)表于 2025-3-25 11:38:34 | 只看該作者
978-3-642-09930-4Springer-Verlag Berlin Heidelberg 2009
24#
發(fā)表于 2025-3-25 17:16:39 | 只看該作者
25#
發(fā)表于 2025-3-26 00:00:48 | 只看該作者
https://doi.org/10.1007/978-3-540-85671-9Duality; Generalized Convexity; Kuhn-Tucker Conditions; Mond-Weir type Duality; Multiobjective Programmi
26#
發(fā)表于 2025-3-26 02:01:39 | 只看該作者
Shashi Kant Mishra,Shou-Yang Wang,Kin Keung LaiThe reader will come to know about the present status of the research in this hot area of research field.The reader does not have to consult various research papers from different journals.Will provid
27#
發(fā)表于 2025-3-26 07:46:11 | 只看該作者
https://doi.org/10.1007/978-0-387-21636-2Following Rueda et al. (1995) and Aghezzaf and Hachimi (2001), we define the generalized type I univex problems. In the following definitions, .,. : . × . × [0,1]→., . = lim .(.,.,λ) ≥0, and b does not depend on λ if functions are differentiable, ?.,?. :.→. and η:. ×.→. is an .-dimensionalvector-valued function.
28#
發(fā)表于 2025-3-26 11:50:25 | 只看該作者
29#
發(fā)表于 2025-3-26 14:37:53 | 只看該作者
Generalized Type I and Related Functions,Following Rueda et al. (1995) and Aghezzaf and Hachimi (2001), we define the generalized type I univex problems. In the following definitions, .,. : . × . × [0,1]→., . = lim .(.,.,λ) ≥0, and b does not depend on λ if functions are differentiable, ?.,?. :.→. and η:. ×.→. is an .-dimensionalvector-valued function.
30#
發(fā)表于 2025-3-26 16:59:30 | 只看該作者
Optimality Conditions,In this chapter, we study optimality conditions for several mathematical programs involving type-I and other related functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青龙| 万全县| 河南省| 巴马| 隆昌县| 建始县| 舒城县| 文登市| 巍山| 湘潭市| 台前县| 牡丹江市| 锦州市| 盐山县| 阳春市| 滦南县| 常宁市| 宜良县| 海伦市| 陆河县| 宣威市| 喀喇| 明溪县| 通海县| 绥化市| 晴隆县| 静海县| 临朐县| 喜德县| 北辰区| 德安县| 双峰县| 宁强县| 广昌县| 烟台市| 龙游县| 垦利县| 颍上县| 新宁县| 仙游县| 兖州市|