找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Convexity and Generalized Monotonicity; Proceedings of the 6 Nicolas Hadjisavvas,Juan Enrique Martínez-Legaz,Je Conference proc

[復(fù)制鏈接]
樓主: deliberate
21#
發(fā)表于 2025-3-25 03:26:57 | 只看該作者
22#
發(fā)表于 2025-3-25 11:11:59 | 只看該作者
Representation of a Polynomial Function as a Difference of Convex Polynomials, with an Applicationallows for employing so-called d.c. optimization techniques..Procedures that permit the calculation of the polynomial convex difference representation of any polynomial are presented and analyzed here, and an application is made to a real problem whose functions are polynomials of degrees up to four.
23#
發(fā)表于 2025-3-25 12:43:21 | 只看該作者
24#
發(fā)表于 2025-3-25 17:21:29 | 只看該作者
25#
發(fā)表于 2025-3-26 00:00:27 | 只看該作者
The Basics of Object-Oriented Programming,del that Rockafellar & Wets called “ray model” of the “cosmic closure” of the Euclidean space in their recent book on Variational Analysis. In this paper we introduce that model and use it to get some new theorems and proofs.
26#
發(fā)表于 2025-3-26 00:17:46 | 只看該作者
Cuts and Semidefinite Relaxations for Nonconvex Quadratic Problemsindefinite problems. Our branching scheme exploits the special structure of box constraints as well as the bounding procedure in which a pair of primal and dual solutions of the associated positive semidefinite relaxation is incorporated.
27#
發(fā)表于 2025-3-26 05:03:03 | 只看該作者
28#
發(fā)表于 2025-3-26 09:20:02 | 只看該作者
29#
發(fā)表于 2025-3-26 15:24:08 | 只看該作者
https://doi.org/10.1007/978-1-4615-0857-1he determination of an MST is simple. Consequently, we are interested in the greatest lower bound for the ratio between the lengths of these both trees: .,which is called the Steiner ratio (of .,)..We look for estimates for .(3,.), depending on the parameter ., and determine general upper bounds for the Steiner ratio of .,.
30#
發(fā)表于 2025-3-26 18:35:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
琼结县| 通许县| 郁南县| 黄浦区| 平塘县| 忻州市| 邛崃市| 成都市| 揭阳市| 犍为县| 富平县| 区。| 松原市| 齐齐哈尔市| 彭州市| 郯城县| 安阳县| 大庆市| 育儿| 宜兰县| 武定县| 桑植县| 铁岭县| 天峨县| 章丘市| 巴林左旗| 清苑县| 九龙坡区| 怀来县| 临邑县| 红河县| 新竹市| 青田县| 通州区| 黄浦区| 新巴尔虎右旗| 银川市| 芒康县| 贺州市| 石阡县| 紫阳县|