找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Connectivity of Graphs; Xueliang Li,Yaping Mao Book 2016 The Author(s) 2016 Connectivity of Graphs.open problems.conjectures.r

[復(fù)制鏈接]
樓主: 空隙
11#
發(fā)表于 2025-3-23 11:49:57 | 只看該作者
12#
發(fā)表于 2025-3-23 14:40:37 | 只看該作者
Maximum Generalized Local Connectivity,In this chapter, we introduce the results on the extremal problems of the generalized connectivity and generalized edge-connectivity.
13#
發(fā)表于 2025-3-23 20:45:11 | 只看該作者
Strategic Management and the Computer,enever needed. All graphs considered in this book are finite, simple, and undirected, unless otherwise stated. We follow the graph theoretical terminology and notation of [., .] for all those not defined here.
14#
發(fā)表于 2025-3-23 22:29:09 | 只看該作者
15#
發(fā)表于 2025-3-24 02:25:50 | 只看該作者
N. Joglar,J.L. Risco,A. Díaz,J.M. Colmenar a positive integer ., the . is to determine sharp bounds for (1) . and (2) ., as . ranges over the class ., and characterize the extremal graphs. The Nordhaus-Gaddum-type relations have received wide attention; see a survey paper [.] by Aouchiche and Hansen.
16#
發(fā)表于 2025-3-24 08:08:26 | 只看該作者
17#
發(fā)表于 2025-3-24 12:19:12 | 只看該作者
Introduction,enever needed. All graphs considered in this book are finite, simple, and undirected, unless otherwise stated. We follow the graph theoretical terminology and notation of [., .] for all those not defined here.
18#
發(fā)表于 2025-3-24 18:03:27 | 只看該作者
Algorithm and Complexity,e have seen in the last chapter, even for some very special graphs, it is very hard to get the exact values of their generalized .-connectivity for general .. A natural question is whether there is a polynomial-time algorithm to get the parameters ..(.) and .. In this chapter, we study the complexity of generalized connectivity.
19#
發(fā)表于 2025-3-24 21:57:19 | 只看該作者
20#
發(fā)表于 2025-3-24 23:39:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 03:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜兰县| 汉沽区| 双江| 五河县| 乐陵市| 抚顺市| 百色市| 德钦县| 洞口县| 新干县| 菏泽市| 安阳市| 深州市| 西城区| 南投县| 长垣县| 启东市| 晋州市| 黄梅县| 临邑县| 郎溪县| 大港区| 台州市| 云林县| 普安县| 开封市| 枣强县| 获嘉县| 荔波县| 安达市| 田林县| 拉萨市| 雷山县| 黄陵县| 阳城县| 湟中县| 五家渠市| 定陶县| 贵溪市| 梨树县| 青州市|