找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Connectivity of Graphs; Xueliang Li,Yaping Mao Book 2016 The Author(s) 2016 Connectivity of Graphs.open problems.conjectures.r

[復(fù)制鏈接]
樓主: 空隙
11#
發(fā)表于 2025-3-23 11:49:57 | 只看該作者
12#
發(fā)表于 2025-3-23 14:40:37 | 只看該作者
Maximum Generalized Local Connectivity,In this chapter, we introduce the results on the extremal problems of the generalized connectivity and generalized edge-connectivity.
13#
發(fā)表于 2025-3-23 20:45:11 | 只看該作者
Strategic Management and the Computer,enever needed. All graphs considered in this book are finite, simple, and undirected, unless otherwise stated. We follow the graph theoretical terminology and notation of [., .] for all those not defined here.
14#
發(fā)表于 2025-3-23 22:29:09 | 只看該作者
15#
發(fā)表于 2025-3-24 02:25:50 | 只看該作者
N. Joglar,J.L. Risco,A. Díaz,J.M. Colmenar a positive integer ., the . is to determine sharp bounds for (1) . and (2) ., as . ranges over the class ., and characterize the extremal graphs. The Nordhaus-Gaddum-type relations have received wide attention; see a survey paper [.] by Aouchiche and Hansen.
16#
發(fā)表于 2025-3-24 08:08:26 | 只看該作者
17#
發(fā)表于 2025-3-24 12:19:12 | 只看該作者
Introduction,enever needed. All graphs considered in this book are finite, simple, and undirected, unless otherwise stated. We follow the graph theoretical terminology and notation of [., .] for all those not defined here.
18#
發(fā)表于 2025-3-24 18:03:27 | 只看該作者
Algorithm and Complexity,e have seen in the last chapter, even for some very special graphs, it is very hard to get the exact values of their generalized .-connectivity for general .. A natural question is whether there is a polynomial-time algorithm to get the parameters ..(.) and .. In this chapter, we study the complexity of generalized connectivity.
19#
發(fā)表于 2025-3-24 21:57:19 | 只看該作者
20#
發(fā)表于 2025-3-24 23:39:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 03:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
渭南市| 临城县| 上杭县| 东乌珠穆沁旗| 泸定县| 南阳市| 福州市| 扎兰屯市| 宜兴市| 武城县| 金山区| 斗六市| 邢台市| 天门市| 锦州市| 阳山县| 吴旗县| 台东市| 密山市| 香格里拉县| 法库县| 靖安县| 和田市| 高淳县| 香河县| 贵溪市| 云霄县| 灵山县| 永仁县| 通渭县| 遵化市| 刚察县| 吉木萨尔县| 大埔县| 望城县| 峡江县| 万安县| 霍林郭勒市| 太原市| 嘉义市| 南投市|