找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Connectivity of Graphs; Xueliang Li,Yaping Mao Book 2016 The Author(s) 2016 Connectivity of Graphs.open problems.conjectures.r

[復(fù)制鏈接]
樓主: 空隙
11#
發(fā)表于 2025-3-23 11:49:57 | 只看該作者
12#
發(fā)表于 2025-3-23 14:40:37 | 只看該作者
Maximum Generalized Local Connectivity,In this chapter, we introduce the results on the extremal problems of the generalized connectivity and generalized edge-connectivity.
13#
發(fā)表于 2025-3-23 20:45:11 | 只看該作者
Strategic Management and the Computer,enever needed. All graphs considered in this book are finite, simple, and undirected, unless otherwise stated. We follow the graph theoretical terminology and notation of [., .] for all those not defined here.
14#
發(fā)表于 2025-3-23 22:29:09 | 只看該作者
15#
發(fā)表于 2025-3-24 02:25:50 | 只看該作者
N. Joglar,J.L. Risco,A. Díaz,J.M. Colmenar a positive integer ., the . is to determine sharp bounds for (1) . and (2) ., as . ranges over the class ., and characterize the extremal graphs. The Nordhaus-Gaddum-type relations have received wide attention; see a survey paper [.] by Aouchiche and Hansen.
16#
發(fā)表于 2025-3-24 08:08:26 | 只看該作者
17#
發(fā)表于 2025-3-24 12:19:12 | 只看該作者
Introduction,enever needed. All graphs considered in this book are finite, simple, and undirected, unless otherwise stated. We follow the graph theoretical terminology and notation of [., .] for all those not defined here.
18#
發(fā)表于 2025-3-24 18:03:27 | 只看該作者
Algorithm and Complexity,e have seen in the last chapter, even for some very special graphs, it is very hard to get the exact values of their generalized .-connectivity for general .. A natural question is whether there is a polynomial-time algorithm to get the parameters ..(.) and .. In this chapter, we study the complexity of generalized connectivity.
19#
發(fā)表于 2025-3-24 21:57:19 | 只看該作者
20#
發(fā)表于 2025-3-24 23:39:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福建省| 南平市| 巴林左旗| 龙里县| 贺兰县| 上虞市| 阳曲县| 娱乐| 图们市| 德庆县| 饶平县| 巨野县| 遂宁市| 富阳市| 六盘水市| 平谷区| 西安市| 屏南县| 中宁县| 土默特右旗| 三河市| 红原县| 洞头县| 民权县| 吴堡县| 铁岭市| 余江县| 马公市| 昌邑市| 南部县| 卓资县| 常宁市| 嵊泗县| 徐闻县| 比如县| 大石桥市| 深圳市| 温宿县| 满城县| 祁东县| 京山县|