找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Coherent States and Their Applications; Askold Perelomov Book 1986 Springer-Verlag Berlin Heidelberg 1986 Applications.classic

[復(fù)制鏈接]
樓主: Deleterious
41#
發(fā)表于 2025-3-28 16:02:12 | 只看該作者
42#
發(fā)表于 2025-3-28 22:43:33 | 只看該作者
Coherent States for Arbitrary Lie Groups concept of the coherent state is introduced for arbitrary Lie groups and some of their properties are investigated. A reader whose interests lie mostly in CS for the simplest Lie groups may skip this chapter.
43#
發(fā)表于 2025-3-29 02:26:58 | 只看該作者
44#
發(fā)表于 2025-3-29 06:02:39 | 只看該作者
45#
發(fā)表于 2025-3-29 10:15:44 | 只看該作者
The Lorentz Group: ,(3, 1)e two- sheeted hyperboloid in the Minkowski space. From another point of view, this CS system has been considered in [89]. It was found to be suitable for a number of problems in relativistic physics and representation theory.
46#
發(fā)表于 2025-3-29 14:26:05 | 只看該作者
Discrete Series of Representations: The General Casely, for groups of motion for complex homogeneous symmetric bounded domains. The CS systems considered are parametrized by the domain points; they are expressed in terms of the Bergmann kernel for this domain. Recall the simplest case, the .(1, 1) group, considered in Chap. 5.
47#
發(fā)表于 2025-3-29 16:05:55 | 只看該作者
1864-5879 plications to various physical problems. Coherent states, introduced originally by Schrodinger and von Neumann, were later employed by Glauber for a quantal description of laser light beams. The concept was generalized by the author for an arbitrary Lie group. In the last decade the formalism has be
48#
發(fā)表于 2025-3-29 21:56:16 | 只看該作者
49#
發(fā)表于 2025-3-30 00:02:09 | 只看該作者
Introductionthe eminent scientists did not attract undue attention. It was only in the early sixties that the approach was thoroughly studied [3–6]. Glauber [7,8] named the states invented by Schr?dinger the . (CS) and showed that they are adequate to describe a coherent laser beam in the framework of quantum theory.
50#
發(fā)表于 2025-3-30 04:07:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东丰县| 泸溪县| 屏南县| 临沭县| 南丰县| 无棣县| 林芝县| 铜川市| 连平县| 威宁| 龙州县| 定西市| 塘沽区| 汾西县| 榆社县| 泗阳县| 旅游| 望都县| 同心县| 双流县| 万州区| 仙桃市| 偏关县| 兴安县| 县级市| 通化市| 桐柏县| 伊金霍洛旗| 嘉义市| 惠来县| 塔河县| 毕节市| 南和县| 宜城市| 铁力市| 舒城县| 铜陵市| 漯河市| 保康县| 湟中县| 岫岩|