找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: General Relativity and Cosmology; A First Encounter Ronald J. Adler Textbook 2021 The Editor(s) (if applicable) and The Author(s), under ex

[復(fù)制鏈接]
樓主: Bush
31#
發(fā)表于 2025-3-27 00:12:36 | 只看該作者
Affine Connections and GeodesicsIn a general Riemann space the concepts of straight lines and parallel vectors must be generalized from those familiar in Euclidian geometry. The fundamental objects needed for the generalization are affine connections. With affine connections we are naturally led to a deeper view of spacetime and the behavior of objects in it.
32#
發(fā)表于 2025-3-27 02:56:23 | 只看該作者
Tensor AnalysisThe ideas of classical vector analysis in Euclidian space generalize naturally to Riemann space. Affine connections are the key to this generalization. Moreover much of classical vector analysis becomes more clear and simple; the divergence and Laplacian are prime examples.
33#
發(fā)表于 2025-3-27 08:38:57 | 只看該作者
Classical Gravity and GeometryIn this chapter we look at the familiar classical gravitational force from a novel perspective, as a geometric effect. This perspective is motivated by the equivalence principle, the close similarity of gravitational effects to the effects of acceleration. As an application of the geometric view the gravitational redshift can be easily derived.
34#
發(fā)表于 2025-3-27 11:52:19 | 只看該作者
35#
發(fā)表于 2025-3-27 16:14:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:01:41 | 只看該作者
Entire and Meromorphic Functions,avity were first developed by nineteenth century mathematicians such as Gauss and Riemann. The most important mathematical objects in such spaces are vectors and tensors.We will treat these using both the classic index notation and a more modern abstract notation.
37#
發(fā)表于 2025-3-28 01:20:30 | 只看該作者
38#
發(fā)表于 2025-3-28 04:17:43 | 只看該作者
39#
發(fā)表于 2025-3-28 09:18:30 | 只看該作者
40#
發(fā)表于 2025-3-28 12:11:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赣榆县| 云阳县| 大悟县| 日喀则市| 达日县| 西丰县| 双峰县| 综艺| 綦江县| 西乌珠穆沁旗| 哈尔滨市| 濮阳市| 镇雄县| 聂拉木县| 镇康县| 阳朔县| 北宁市| 扬中市| 泗水县| 海宁市| 平泉县| 伊吾县| 毕节市| 巴塘县| 唐河县| 晋州市| 江安县| 怀宁县| 葵青区| 大悟县| 富源县| 靖安县| 永仁县| 秦安县| 滦平县| 梁平县| 海门市| 彭泽县| 合阳县| 晋中市| 辉南县|