找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Relativity Without Calculus; A Concise Introducti Jose Natario Book 2011 Springer-Verlag Berlin Heidelberg 2011 Black Holes geometr

[復(fù)制鏈接]
樓主: 獨(dú)裁者
21#
發(fā)表于 2025-3-25 04:29:35 | 只看該作者
22#
發(fā)表于 2025-3-25 10:42:00 | 只看該作者
Minkowski Geometry,erval, which physically is just the time measured by a free particle travelling between the two events, is very different from the Euclidean distance: the length of one side of a triangle is always larger than the sum of the lengths of the other two (twin paradox), and lines are the curves with maximum length (generalized twin paradox).
23#
發(fā)表于 2025-3-25 13:15:54 | 只看該作者
Cosmology,sequences of the Einstein equation, which in the FLRW models reduces to the Friedmann equations for the density and radius of the Universe. We see how these equations imply that the Universe originated in a Big Bang, and will, according to the currently accepted cosmological parameters, expand forever.
24#
發(fā)表于 2025-3-25 17:47:31 | 只看該作者
25#
發(fā)表于 2025-3-25 23:16:04 | 只看該作者
Gravity,he gravitational field of a spherically symmetric body, and explain how these equations determine the motion given initial conditions. As an example, we compute the speed of a circular orbit, and use it to estimate the conditions under which we should expect relativistic corrections to Newtonian gravity.
26#
發(fā)表于 2025-3-26 00:29:27 | 只看該作者
27#
發(fā)表于 2025-3-26 05:26:44 | 只看該作者
28#
發(fā)表于 2025-3-26 11:31:47 | 只看該作者
29#
發(fā)表于 2025-3-26 16:41:53 | 只看該作者
30#
發(fā)表于 2025-3-26 18:15:44 | 只看該作者
General Relativity,e observation that curved space–time is locally flat, and implies that free-falling particles must move along geodesics (and light rays along null geodesics) just like in flat Minkowski space–time. Given the matter distribution, the space–time metric can be found by solving the Einstein equation, whose nature we describe.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绵竹市| 镇赉县| 承德市| 卢氏县| 连江县| 涟源市| 绥阳县| 麦盖提县| 深圳市| 松桃| 香港| 崇义县| 武冈市| 宜都市| 孟津县| 白城市| 临江市| 拉孜县| 团风县| 平泉县| 河南省| 十堰市| 巴彦县| 前郭尔| 攀枝花市| 惠来县| 香河县| 富顺县| 大丰市| 大荔县| 施秉县| 长春市| 城步| 梅州市| 肇源县| 剑阁县| 嫩江县| 左贡县| 三原县| 台安县| 蒙城县|