找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Relativity; Norbert Straumann Textbook 2013Latest edition Springer Science+Business Media Dordrecht 2013 Einstein’s Field Equation

[復(fù)制鏈接]
樓主: Impacted
11#
發(fā)表于 2025-3-23 13:05:19 | 只看該作者
Differentiable Manifoldsoncepts connected with the notion of a differentiable manifold. We give two definitions of a differentiable manifold. The standard one starts with a topological space. One can alternatively begin with a set and introduce the topology with a given atlas. This approach is not only practical to constru
12#
發(fā)表于 2025-3-23 15:15:32 | 只看該作者
Tangent Vectors, Vector and Tensor Fieldsfinitions. On the basis this notion vector fields are introduced, together with their Lie algebra structure. In the subsection on tensor fields, the reader is assumed to be familiar with some basic material of multilinear algebra. Important examples of tensor fields are (pseudo-) Riemannian metrics
13#
發(fā)表于 2025-3-23 21:03:18 | 只看該作者
14#
發(fā)表于 2025-3-24 00:44:23 | 只看該作者
Differential Forms repeating some algebraic preliminaries on exterior algebras. Then exterior differential forms and the associated exterior algebra are introduced. On this we study general properties of derivations and antiderivations. The most important one is Cartan’s exterior derivative. Poincaré’s Lemma is also
15#
發(fā)表于 2025-3-24 05:25:52 | 只看該作者
16#
發(fā)表于 2025-3-24 08:43:45 | 只看該作者
Some Details and Supplementslong maps and their induced covariant derivatives, because this is used at various places in the book. For a convenient formulation we introduce the tangent bundle of a manifold, the prototype of a vector bundle. Applications to variations of curves will illustrate the usefulness of the concepts.
17#
發(fā)表于 2025-3-24 13:16:02 | 只看該作者
18#
發(fā)表于 2025-3-24 17:43:27 | 只看該作者
19#
發(fā)表于 2025-3-24 21:38:09 | 只看該作者
Interpreting the Chemical Residues Storyly to the kinematical framework of GR and determines—suitable interpreted—the coupling of physical systems to external gravitational fields. This is discussed in detail in the present chapter. Although Einstein’s Equivalence Principle (EEP) is somewhat vague, since it is not entirely clear what is m
20#
發(fā)表于 2025-3-25 00:42:34 | 只看該作者
https://doi.org/10.1007/3-540-30571-8r, we shall first give a simple physical motivation for the field equation and will then show that it is determined by only a few natural requirements (Lovelock theorem), with two coupling constants. One is just Newtons gravitational constant, and the other is the much discussed cosmological constan
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黎川县| 漳浦县| 台前县| 邯郸县| 上高县| 长丰县| 昌宁县| 成都市| 江山市| 韶山市| 神木县| 礼泉县| 泾川县| 株洲县| 合阳县| 小金县| 陇川县| 通州区| 新巴尔虎左旗| 阿勒泰市| 洪泽县| 舒城县| 沁源县| 阿拉尔市| 武邑县| 科尔| 永春县| 宜宾市| 苍山县| 五台县| 东乡县| 永登县| 泰兴市| 文登市| 萨迦县| 祁连县| 偏关县| 霸州市| 竹溪县| 兴安县| 开远市|