找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: General Inequalities 5; 5th International Co Wolfgang Walter Book 1987 Birkh?user Verlag Basel 1987 Differentialgleichung.manifold.number t

[復(fù)制鏈接]
樓主: Nonchalant
41#
發(fā)表于 2025-3-28 14:40:40 | 只看該作者
42#
發(fā)表于 2025-3-28 22:05:50 | 只看該作者
0373-3149 Overview: 978-3-0348-7194-5978-3-0348-7192-1Series ISSN 0373-3149 Series E-ISSN 2296-6072
43#
發(fā)表于 2025-3-28 23:42:10 | 只看該作者
44#
發(fā)表于 2025-3-29 06:13:53 | 只看該作者
-Designs and ,-wise Balanced Designs,f of the inequality above, first given by Kwong and Zettl in 1979, and later in 1981. Both types of proof offer an explanation of the fact that 4 is a global number for the inequality, for all intervals (a, ∞) and all weights w of the kind prescribed above.
45#
發(fā)表于 2025-3-29 09:58:09 | 只看該作者
On a Hardy-Littlewood Type Integral Inequality with a Monotonic Weight Functionasing function on (a, ∞). The inequality is valid, with the number 4, for all complex-valued f such that f and f″ ε L. (a, ∞). In certain cases the number 4 is best possible and all cases of equality can be described..The example w(x) = x on (0, ∞) is considered in detail and it is shown the best po
46#
發(fā)表于 2025-3-29 14:10:10 | 只看該作者
47#
發(fā)表于 2025-3-29 18:23:15 | 只看該作者
On Some Discrete Quadratic Inequalities) in the middle term can be understood in four different ways (see introduction) and either the plus or the minus sign is taken. The best constants α, β are found in all cases. This is based on the determination of eigen-values of suitable Hermitean matrices.
48#
發(fā)表于 2025-3-29 20:10:40 | 只看該作者
Some Inequalities for Geometric Meanstypified by.under appropriate conditions. The products on the left are replaced, in this paper, by geometric means with more general weights, and the factors m. on both sides by factors r. for suitably small r. Some inequalities having an analogous character are first discussed, since they led the w
49#
發(fā)表于 2025-3-30 01:44:20 | 只看該作者
50#
發(fā)表于 2025-3-30 05:06:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 15:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
韶关市| 慈溪市| 东山县| 马边| 忻州市| 伊吾县| 彰化市| 克什克腾旗| 靖宇县| 崇信县| 巨野县| 宜良县| 广德县| 巫溪县| 岳西县| 会昌县| 常德市| 平度市| 黄浦区| 临西县| 双峰县| 攀枝花市| 铜陵市| 阜新| 常德市| 泰州市| 达日县| 漠河县| 双流县| 肇庆市| 高邑县| 周口市| 左贡县| 环江| 无极县| 泸西县| 仲巴县| 革吉县| 抚州市| 罗源县| 石林|