找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: General Galois Geometries; J.W.P Hirschfeld,J.A. Thas Book 2016 Springer-Verlag London 2016 Finite Geometry.Finite Field.Algebraic Variety

[復(fù)制鏈接]
查看: 53526|回復(fù): 36
樓主
發(fā)表于 2025-3-21 20:08:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱General Galois Geometries
編輯J.W.P Hirschfeld,J.A. Thas
視頻videohttp://file.papertrans.cn/383/382050/382050.mp4
概述Contains many applications to coding theory, algebraic geometry, incidence geometry, design theory, graph theory, and group theory.Provides detailed studies of quadrics, Hermitian varieties, Grassmann
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: General Galois Geometries;  J.W.P Hirschfeld,J.A. Thas Book 2016 Springer-Verlag London 2016 Finite Geometry.Finite Field.Algebraic Variety
描述This book is the second edition of the third and last volume of a treatise on projective spaces over a finite field, also known as Galois geometries. This volume completes the trilogy comprised of plane case (first volume) and three dimensions (second volume).?.This revised edition includes much updating and new material. It is a mostly self-contained study of classical varieties over a finite field, related incidence structures and particular point sets in finite n-dimensional projective spaces.?.General Galois Geometries. is suitable for PhD students and researchers in combinatorics and geometry. The separate chapters can be used for courses at postgraduate level..
出版日期Book 2016
關(guān)鍵詞Finite Geometry; Finite Field; Algebraic Variety; Quadric; Hermitian Variety; Grassmann Variety; Incidence
版次1
doihttps://doi.org/10.1007/978-1-4471-6790-7
isbn_softcover978-1-4471-7391-5
isbn_ebook978-1-4471-6790-7Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag London 2016
The information of publication is updating

書目名稱General Galois Geometries影響因子(影響力)




書目名稱General Galois Geometries影響因子(影響力)學(xué)科排名




書目名稱General Galois Geometries網(wǎng)絡(luò)公開(kāi)度




書目名稱General Galois Geometries網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱General Galois Geometries被引頻次




書目名稱General Galois Geometries被引頻次學(xué)科排名




書目名稱General Galois Geometries年度引用




書目名稱General Galois Geometries年度引用學(xué)科排名




書目名稱General Galois Geometries讀者反饋




書目名稱General Galois Geometries讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:52:56 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:24:47 | 只看該作者
Book 2016int sets in finite n-dimensional projective spaces.?.General Galois Geometries. is suitable for PhD students and researchers in combinatorics and geometry. The separate chapters can be used for courses at postgraduate level..
地板
發(fā)表于 2025-3-22 06:17:29 | 只看該作者
1439-7382 detailed studies of quadrics, Hermitian varieties, GrassmannThis book is the second edition of the third and last volume of a treatise on projective spaces over a finite field, also known as Galois geometries. This volume completes the trilogy comprised of plane case (first volume) and three dimensi
5#
發(fā)表于 2025-3-22 11:24:49 | 只看該作者
1439-7382 e for PhD students and researchers in combinatorics and geometry. The separate chapters can be used for courses at postgraduate level..978-1-4471-7391-5978-1-4471-6790-7Series ISSN 1439-7382 Series E-ISSN 2196-9922
6#
發(fā)表于 2025-3-22 14:56:12 | 只看該作者
7#
發(fā)表于 2025-3-22 19:31:56 | 只看該作者
Quadrics,perties of quadrics in three dimensions were developed in Chapters 15 and 16 of FPSOTD. Quadrics in five dimensions were also considered in Chapters 15, 17 and 20. First the essential definitions are recalled.
8#
發(fā)表于 2025-3-23 00:07:36 | 只看該作者
Nonlinear Dynamics of the Laser,perties of quadrics in three dimensions were developed in Chapters 15 and 16 of FPSOTD. Quadrics in five dimensions were also considered in Chapters 15, 17 and 20. First the essential definitions are recalled.
9#
發(fā)表于 2025-3-23 02:25:05 | 只看該作者
J.W.P Hirschfeld,J.A. ThasContains many applications to coding theory, algebraic geometry, incidence geometry, design theory, graph theory, and group theory.Provides detailed studies of quadrics, Hermitian varieties, Grassmann
10#
發(fā)表于 2025-3-23 07:42:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-4 22:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仙游县| 大竹县| 长子县| 鄂伦春自治旗| 高青县| 东安县| 保定市| 庆阳市| 寿光市| 沙湾县| 锡林郭勒盟| 天祝| 那坡县| 太保市| 客服| 佛教| 长泰县| 苍山县| 天峨县| 合江县| 平远县| 桂阳县| 新泰市| 忻州市| 房产| 崇信县| 开远市| 灌阳县| 金华市| 永和县| 修文县| 潍坊市| 鄯善县| 武清区| 南澳县| 柳州市| 湘潭县| 无棣县| 清新县| 芦溪县| 庆安县|