找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gene Regulatory Networks; Methods and Protocol Guido Sanguinetti,Van Anh Huynh-Thu Book 2019 Springer Science+Business Media, LLC, part of

[復(fù)制鏈接]
樓主: 有靈感
51#
發(fā)表于 2025-3-30 10:36:13 | 只看該作者
Overview and Evaluation of Recent Methods for Statistical Inference of Gene Regulatory Networks froactical applications with pointers to publicly available software implementations are included. The chapter concludes with a comprehensive comparative benchmark study on simulated data and a real-work application taken from the current plant systems biology.
52#
發(fā)表于 2025-3-30 14:44:32 | 只看該作者
53#
發(fā)表于 2025-3-30 17:34:03 | 只看該作者
,Aus der forstlichen Ger?thekammer,ide an introduction to the basic concepts underpinning network inference tools, attempting a categorization which highlights commonalities and relative strengths. While the chapter is meant to be self-contained, the material presented should provide a useful background to the later, more specialized chapters of this book.
54#
發(fā)表于 2025-3-30 22:23:44 | 只看該作者
55#
發(fā)表于 2025-3-31 02:26:38 | 只看該作者
Gene Regulatory Network Inference: An Introductory Survey,ide an introduction to the basic concepts underpinning network inference tools, attempting a categorization which highlights commonalities and relative strengths. While the chapter is meant to be self-contained, the material presented should provide a useful background to the later, more specialized chapters of this book.
56#
發(fā)表于 2025-3-31 05:04:28 | 只看該作者
Causal Queries from Observational Data in Biological Systems via Bayesian Networks: An Empirical Stlogical networks, when the data is observational. We also discuss its ability to decipher the causal information flow as observed in gene expression. We also illustrate our exploration by experiments on small simulated networks as well as on a real biological data set.
57#
發(fā)表于 2025-3-31 12:26:17 | 只看該作者
Gene Regulatory Network Inference: An Introductory Survey,he late 1990s, reconstructing the structure of such networks has been a central computational problem in systems biology. While the problem is certainly not solved in its entirety, considerable progress has been made in the last two decades, with mature tools now available. This chapter aims to prov
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山东省| 三穗县| 揭西县| 财经| 镇江市| 历史| 泸州市| 新密市| 耿马| 吉安县| 米易县| 扎赉特旗| 富顺县| 北碚区| 丰原市| 台北县| 嘉黎县| 孝昌县| 桂阳县| 梅州市| 义乌市| 通榆县| 凌海市| 伊宁市| 九龙坡区| 长汀县| 清水河县| 贞丰县| 鹰潭市| 高邑县| 华安县| 昌图县| 县级市| 福贡县| 马公市| 前郭尔| 格尔木市| 历史| 永胜县| 宿松县| 上饶市|