找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gems of Theoretical Computer Science; Uwe Sch?ning,Randall Pruim Book 1998 Springer-Verlag Berlin Heidelberg 1998 Kolmogorov complexity.Re

[復制鏈接]
樓主: 巡洋
31#
發(fā)表于 2025-3-27 00:51:58 | 只看該作者
https://doi.org/10.1007/978-1-4757-2696-1In their pioneering work of 1984, Furst, Saxe and Sipser introduced the method of “random restrictions” to achieve lower bounds for circuits: The parity function cannot be computed by an AND-OR circuit of polynomial size and constant depth.
32#
發(fā)表于 2025-3-27 04:53:00 | 只看該作者
The Meaning of the Constitutive Equation,The lower bound theory for circuits received an additional boost through algebraic techniques (in combination with probabilistic techniques) that go back to Razborov and Smolensky.
33#
發(fā)表于 2025-3-27 07:43:26 | 只看該作者
34#
發(fā)表于 2025-3-27 12:46:47 | 只看該作者
https://doi.org/10.1007/978-1-4757-2257-4If all NP-complete languages were P-isomorphic to each other, then it would follow that P ≠ NP. This “Isomorphism Conjecture” has been the starting point of much research, in particular into sparse sets and their potential to be NP-complete.
35#
發(fā)表于 2025-3-27 15:27:02 | 只看該作者
36#
發(fā)表于 2025-3-27 21:37:40 | 只看該作者
https://doi.org/10.1007/978-1-4471-3774-0The following results suggest that the Graph Isomorphism problem is not NP-complete, since, unlike the known NP-complete problems, Graph Isomorphism belongs to a class that can be defined by means of the BPoperator, an operator that has proven useful in many other applications as well.
37#
發(fā)表于 2025-3-28 01:08:37 | 只看該作者
38#
發(fā)表于 2025-3-28 02:48:15 | 只看該作者
39#
發(fā)表于 2025-3-28 06:31:16 | 只看該作者
,Hilbert’s Tenth Problem,Hilbert’s Tenth Problem goes back to the year 1900 and concerns a fundamental question, namely whether there is an algorithmic method for solving Diophantine equations. The ultimate solution to this problem was not achieved until 1970. The “solution” wets, however, a negative one: there is no such algorithm.
40#
發(fā)表于 2025-3-28 11:41:40 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 21:41
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
临沭县| 泉州市| 新源县| 台中市| 莎车县| 永德县| 民权县| 堆龙德庆县| 阳信县| 仲巴县| 青河县| 富源县| 荆门市| 鹰潭市| 农安县| 洱源县| 游戏| 五家渠市| 兖州市| 贵州省| 渑池县| 连城县| 伊金霍洛旗| 蕲春县| 姜堰市| 廊坊市| 昌吉市| 吴川市| 津南区| 上林县| 武邑县| 渭南市| 汶上县| 水城县| 托克逊县| 北海市| 亚东县| 尉犁县| 多伦县| 阳西县| 科尔|