找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gems of Combinatorial Optimization and Graph Algorithms; Andreas S. Schulz,Martin Skutella,Dorothea Wagner Book 2015 Springer Internationa

[復(fù)制鏈接]
樓主: Jackson
11#
發(fā)表于 2025-3-23 09:57:28 | 只看該作者
12#
發(fā)表于 2025-3-23 16:04:51 | 只看該作者
13#
發(fā)表于 2025-3-23 19:08:42 | 只看該作者
14#
發(fā)表于 2025-3-23 23:41:15 | 只看該作者
15#
發(fā)表于 2025-3-24 03:02:44 | 只看該作者
Finding Longest Geometric Tours,We discuss the problem of finding a longest tour for a set of points in a geometric space. In particular, we show that a longest tour for a set of . points in the plane can be computed in time .(.) if distances are determined by the Manhattan metric, while the same problem is NP-hard for points on a sphere under Euclidean distances.
16#
發(fā)表于 2025-3-24 07:56:02 | 只看該作者
17#
發(fā)表于 2025-3-24 11:20:59 | 只看該作者
18#
發(fā)表于 2025-3-24 15:34:01 | 只看該作者
19#
發(fā)表于 2025-3-24 20:10:27 | 只看該作者
Biogas zum Heizen und als Rohstoff,de additional points, so-called ., which can be inserted at arbitrary places in order to minimize the total length with respect to the given metric. This paper focuses on uniform orientation metrics where the edges of the network are restricted to lie within a given set of legal directions. We here
20#
發(fā)表于 2025-3-25 00:08:11 | 只看該作者
Hamid Reza Garshasbi,Seyed Morteza Naghib costs and a budget. The goal is to compute a matching of maximum weight such that its cost does not exceed the budget. This problem is weakly NP-hard. We present the first polynomial-time approximation scheme for this problem. Our scheme computes two solutions to the Lagrangian relaxation of the pr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贺兰县| 台湾省| 谢通门县| 泸西县| 和平县| 家居| 醴陵市| 刚察县| 翼城县| 湖州市| 娄底市| 永顺县| 嘉兴市| 崇文区| 昌都县| 平舆县| 丹阳市| 商南县| 钟祥市| 新巴尔虎右旗| 肇东市| 高雄县| 新龙县| 漳平市| 山阳县| 大安市| 九龙坡区| 新建县| 临湘市| 张家口市| 连平县| 都江堰市| 弥渡县| 土默特左旗| 仁怀市| 汝城县| 红原县| 台山市| 克拉玛依市| 洛阳市| 湖北省|