找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gelfand Triples and Their Hecke Algebras; Harmonic Analysis fo Tullio Ceccherini-Silberstein,Fabio Scarabotti,Fil Book 2020 Springer Nature

[復(fù)制鏈接]
查看: 9707|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:33:17 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Gelfand Triples and Their Hecke Algebras
副標(biāo)題Harmonic Analysis fo
編輯Tullio Ceccherini-Silberstein,Fabio Scarabotti,Fil
視頻videohttp://file.papertrans.cn/382/381407/381407.mp4
概述This is the first book on an essentially new subject. It will serve as a reference for future developments..The treatment is self-contained and therefore accessible to a wide audience..All arguments a
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Gelfand Triples and Their Hecke Algebras; Harmonic Analysis fo Tullio Ceccherini-Silberstein,Fabio Scarabotti,Fil Book 2020 Springer Nature
描述This monograph is the first comprehensive treatment of multiplicity-free induced representations of finite groups as a generalization of finite Gelfand pairs. Up to now, researchers have been somehow reluctant to face such a problem in a general situation, and only partial results were obtained in the one-dimensional case. Here, for the first time, new interesting and important results are proved. In particular, after developing a general theory (including the study of the associated Hecke algebras and the harmonic analysis of the corresponding spherical functions), two completely new highly nontrivial and significant examples (in the setting of linear groups over finite fields) are examined in full detail. The readership ranges from graduate students to experienced researchers in Representation Theory and Harmonic Analysis..
出版日期Book 2020
關(guān)鍵詞Gelfand Pair; General Linear Group over a Finite Field; Hecke Algebra; Induced Representation; Spherical
版次1
doihttps://doi.org/10.1007/978-3-030-51607-9
isbn_softcover978-3-030-51606-2
isbn_ebook978-3-030-51607-9Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Gelfand Triples and Their Hecke Algebras影響因子(影響力)




書目名稱Gelfand Triples and Their Hecke Algebras影響因子(影響力)學(xué)科排名




書目名稱Gelfand Triples and Their Hecke Algebras網(wǎng)絡(luò)公開度




書目名稱Gelfand Triples and Their Hecke Algebras網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Gelfand Triples and Their Hecke Algebras被引頻次




書目名稱Gelfand Triples and Their Hecke Algebras被引頻次學(xué)科排名




書目名稱Gelfand Triples and Their Hecke Algebras年度引用




書目名稱Gelfand Triples and Their Hecke Algebras年度引用學(xué)科排名




書目名稱Gelfand Triples and Their Hecke Algebras讀者反饋




書目名稱Gelfand Triples and Their Hecke Algebras讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:30:00 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:08:36 | 只看該作者
地板
發(fā)表于 2025-3-22 07:14:51 | 只看該作者
Biomassebestimmung und -charakterisierung,ls in Chapter 13 of our monograph. We refer to the CIMPA lecture notes by Faraut (Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques, CIMPA Lecture Notes, 1980) for an excellent classical reference in the case of Gelfand pairs.
5#
發(fā)表于 2025-3-22 09:17:26 | 只看該作者
6#
發(fā)表于 2025-3-22 14:13:56 | 只看該作者
0075-8434 and therefore accessible to a wide audience..All arguments aThis monograph is the first comprehensive treatment of multiplicity-free induced representations of finite groups as a generalization of finite Gelfand pairs. Up to now, researchers have been somehow reluctant to face such a problem in a ge
7#
發(fā)表于 2025-3-22 17:54:57 | 只看該作者
8#
發(fā)表于 2025-3-22 21:12:13 | 只看該作者
9#
發(fā)表于 2025-3-23 02:11:54 | 只看該作者
10#
發(fā)表于 2025-3-23 07:26:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东宁县| 从江县| 房山区| 葫芦岛市| 东源县| 岗巴县| 揭西县| 孙吴县| 闽侯县| 桂阳县| 汤原县| 山阳县| 高雄市| 泗阳县| 长海县| 建湖县| 姜堰市| 荃湾区| 桃江县| 漠河县| 阿荣旗| 永靖县| 甘洛县| 克山县| 大理市| 高安市| 韩城市| 嘉兴市| 秭归县| 周至县| 镇江市| 揭西县| 沙坪坝区| 称多县| 皮山县| 奎屯市| 新巴尔虎右旗| 宁阳县| 淮滨县| 怀集县| 玉门市|