找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Gaussian Random Processes; I. A. Ibragimov,Y. A. Rozanov Book 1978 Springer-Verlag New York Inc. 1978 Ergodic theory.Gaussian measure.Gaus

[復(fù)制鏈接]
樓主: HEM
11#
發(fā)表于 2025-3-23 13:05:33 | 只看該作者
12#
發(fā)表于 2025-3-23 15:05:04 | 只看該作者
13#
發(fā)表于 2025-3-23 20:58:37 | 只看該作者
https://doi.org/10.1007/978-3-662-00542-2s generated by the process on the set ., that is, . (.) is the minimal .-algebra containing events such as.the . being Borel sets on the real line.* Algebras of the form .(?∞, .) determine the past of the process (before time .), algebras of the form .(., ∞) determine the future of the process (afte
14#
發(fā)表于 2025-3-23 22:53:51 | 只看該作者
Autogenes Training und gestufte Aktivhypnosection IV.1 we obtained a characterization of the spectrum of Gaussian stationary processes satisfying a strong mixing condition. We note in advance that the results regarding the behavior of spectral densities .(.) of completely regular processes with continuous time on any finite interval of variat
15#
發(fā)表于 2025-3-24 06:02:23 | 只看該作者
16#
發(fā)表于 2025-3-24 07:20:52 | 只看該作者
17#
發(fā)表于 2025-3-24 10:56:18 | 只看該作者
Wesen und Wirkung des Autogenen TrainingsWe consider in this chapter a wide-sense stationary process . (.) with discrete time . = 0, ±1,… .Here we deal only with the concepts formulated in terms of the second-order statistics; hence it does not really matter whether the process . (.) is Gaussian or not.
18#
發(fā)表于 2025-3-24 15:31:32 | 只看該作者
https://doi.org/10.1007/978-3-663-02330-2Let us consider a random process of the form.where . (.), . ∈ ., is an unknown deterministic function from a given class . and .(.), . ∈ ., is a Gaussian stationary process with zero mean and correlation function .(.).
19#
發(fā)表于 2025-3-24 21:59:37 | 只看該作者
20#
發(fā)表于 2025-3-24 23:30:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿克苏市| 龙南县| 东至县| 潮安县| 遂宁市| 崇信县| 洪湖市| 宝清县| 余庆县| 丘北县| 中西区| 托克逊县| 安新县| 玉溪市| 息烽县| 城口县| 东兰县| 上林县| 苍山县| 中阳县| 康乐县| 抚顺县| 白山市| 历史| 华坪县| 合川市| 池州市| 延川县| 五华县| 辽宁省| 酒泉市| 新兴县| 拉萨市| 繁峙县| 白河县| 临西县| 会东县| 怀仁县| 红河县| 台湾省| 治县。|