找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gaussian Measures in Finite and Infinite Dimensions; Daniel W. Stroock Textbook 2023 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
查看: 38904|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:53:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Gaussian Measures in Finite and Infinite Dimensions
編輯Daniel W. Stroock
視頻videohttp://file.papertrans.cn/381/380955/380955.mp4
概述Text avoid heavy technical "machinery" common in the study of stochastic processes.Rapid intro to several major areas of math, even outside of Gaussian Measure Theory.Useful in a topics course and as
叢書名稱Universitext
圖書封面Titlebook: Gaussian Measures in Finite and Infinite Dimensions;  Daniel W. Stroock Textbook 2023 The Editor(s) (if applicable) and The Author(s), unde
描述This text provides a concise introduction, suitable for a one-semester special topics.course, to the remarkable properties of Gaussian measures on both finite and infinite.dimensional spaces. It begins with a brief resumé of probabilistic results in which Fourier.analysis plays an essential role, and those results are then applied to derive a few basic.facts about Gaussian measures on finite dimensional spaces. In anticipation of the analysis.of Gaussian measures on infinite dimensional spaces, particular attention is given to those.properties of Gaussian measures that are dimension independent, and Gaussian processes.are constructed. The rest of the book is devoted to the study of Gaussian measures on.Banach spaces. The perspective adopted is the one introduced by I. Segal and developed.by L. Gross in which the Hilbert structure underlying the measure is emphasized..The contents of this bookshould be accessible to either undergraduate or graduate.students who are interested in probability theory and have a solid background in Lebesgue.integration theory and a familiarity with basic functional analysis. Although the focus is.on Gaussian measures, the book introduces its readers to
出版日期Textbook 2023
關(guān)鍵詞Gaussian measures; Wiener spaces; characteristic functions; Cramer-Levy theorem; Gaussian spectral prope
版次1
doihttps://doi.org/10.1007/978-3-031-23122-3
isbn_softcover978-3-031-23121-6
isbn_ebook978-3-031-23122-3Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Gaussian Measures in Finite and Infinite Dimensions影響因子(影響力)




書目名稱Gaussian Measures in Finite and Infinite Dimensions影響因子(影響力)學(xué)科排名




書目名稱Gaussian Measures in Finite and Infinite Dimensions網(wǎng)絡(luò)公開度




書目名稱Gaussian Measures in Finite and Infinite Dimensions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Gaussian Measures in Finite and Infinite Dimensions被引頻次




書目名稱Gaussian Measures in Finite and Infinite Dimensions被引頻次學(xué)科排名




書目名稱Gaussian Measures in Finite and Infinite Dimensions年度引用




書目名稱Gaussian Measures in Finite and Infinite Dimensions年度引用學(xué)科排名




書目名稱Gaussian Measures in Finite and Infinite Dimensions讀者反饋




書目名稱Gaussian Measures in Finite and Infinite Dimensions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:17:06 | 只看該作者
Gaussian Measures in Finite and Infinite Dimensions978-3-031-23122-3Series ISSN 0172-5939 Series E-ISSN 2191-6675
板凳
發(fā)表于 2025-3-22 02:16:52 | 只看該作者
地板
發(fā)表于 2025-3-22 08:21:29 | 只看該作者
5#
發(fā)表于 2025-3-22 11:02:21 | 只看該作者
6#
發(fā)表于 2025-3-22 16:25:37 | 只看該作者
Hans-Georg Harnisch,J?rg NeubergerThis chapter is a continuation of the preceding one. Here we will derive a few more general properies of abstract Wiener spaces and then contstruct examples of what physicists call free Euclidean fields.
7#
發(fā)表于 2025-3-22 17:23:52 | 只看該作者
8#
發(fā)表于 2025-3-22 21:22:43 | 只看該作者
Gaussian Measures and Families,This chapter deals with some of the properties of Gaussian measures and the construction of families of Gaussian random variables.
9#
發(fā)表于 2025-3-23 02:37:33 | 只看該作者
Gaussian Measures on a Banach Space,The theories of Gaussian measures and Hilbert spaces are inextricably related, and the goal of this and the next chapter is to explain and explore that relationship.
10#
發(fā)表于 2025-3-23 07:56:10 | 只看該作者
Further Properties and Examples of Abstract Wiener Spaces,This chapter is a continuation of the preceding one. Here we will derive a few more general properies of abstract Wiener spaces and then contstruct examples of what physicists call free Euclidean fields.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
峡江县| 上杭县| 敦煌市| 武川县| 内乡县| 家居| 朝阳县| 旅游| 大厂| 大荔县| 青田县| 山阳县| 汝城县| 当涂县| 庆云县| 张家口市| 北京市| 吉水县| 华坪县| 稻城县| 桐城市| 安溪县| 高邮市| 金平| 新蔡县| 津南区| 托里县| 英超| 灵石县| 邵东县| 平山县| 华容县| 开江县| 乌拉特后旗| 皮山县| 长春市| 连平县| 项城市| 岳普湖县| 泾阳县| 梓潼县|