找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gaussian Harmonic Analysis; Wilfredo Urbina-Romero Book 2019 Springer Nature Switzerland AG 2019 Gaussian measure.Hermite polynomial expan

[復(fù)制鏈接]
查看: 18866|回復(fù): 47
樓主
發(fā)表于 2025-3-21 17:25:28 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Gaussian Harmonic Analysis
編輯Wilfredo Urbina-Romero
視頻videohttp://file.papertrans.cn/381/380953/380953.mp4
概述Updated and self-contained exposition of all topics of Gaussian harmonic analysis that up to now are mostly scattered in research papers and sections of books.Gaussian harmonic analysis may serve as a
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Gaussian Harmonic Analysis;  Wilfredo Urbina-Romero Book 2019 Springer Nature Switzerland AG 2019 Gaussian measure.Hermite polynomial expan
描述.Authored by a ranking authority in Gaussian harmonic analysis, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: harmonic analysis and? probability. The book is intended for a very diverse audience, from graduate students all the way to researchers working in a broad spectrum of areas in analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of real analysis as well as with classical harmonic analysis, including Calderón-Zygmund theory; also some knowledge of basic orthogonal polynomials theory would be convenient. The monograph? develops the main topics of classical harmonic analysis (semigroups, covering lemmas, maximal functions, Littlewood-Paley functions, spectral multipliers, fractional integrals and fractional derivatives, singular integrals) with respect to the Gaussian measure. The text provide an updated exposition, as self-contained as possible, of all the topics in Gaussian harmonic analysis that up to now are mostly scattered in research papers and sections of books; also an exhaustive bibliography for further reading.? Each chapter ends with a section of no
出版日期Book 2019
關(guān)鍵詞Gaussian measure; Hermite polynomial expansions; Ornstein-Uhlenbeck operator; Ornstein-Uhlenbeck semigr
版次1
doihttps://doi.org/10.1007/978-3-030-05597-4
isbn_ebook978-3-030-05597-4Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Gaussian Harmonic Analysis影響因子(影響力)




書目名稱Gaussian Harmonic Analysis影響因子(影響力)學(xué)科排名




書目名稱Gaussian Harmonic Analysis網(wǎng)絡(luò)公開度




書目名稱Gaussian Harmonic Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Gaussian Harmonic Analysis被引頻次




書目名稱Gaussian Harmonic Analysis被引頻次學(xué)科排名




書目名稱Gaussian Harmonic Analysis年度引用




書目名稱Gaussian Harmonic Analysis年度引用學(xué)科排名




書目名稱Gaussian Harmonic Analysis讀者反饋




書目名稱Gaussian Harmonic Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:17:54 | 只看該作者
,The Ornstein–Uhlenbeck Operator and the Ornstein–Uhlenbeck Semigroup,sian harmonic analysis, to the Laplacian and the heat semigroup in the classical case. Then, we study an important property of the Ornstein–Uhlenbeck semigroup, the hypercontractivity property, and some of its applications.
板凳
發(fā)表于 2025-3-22 00:45:13 | 只看該作者
地板
發(fā)表于 2025-3-22 05:03:40 | 只看該作者
,Covering Lemmas, Gaussian Maximal Functions, and Calderón–Zygmund Operators,peration in analysis and to understand and simplify its study, maximal functions are introduced. Moreover, for any limit process such as almost sure convergence, there is a maximal function that controls it; therefore, the study of their properties is crucial.
5#
發(fā)表于 2025-3-22 12:05:04 | 只看該作者
6#
發(fā)表于 2025-3-22 16:22:04 | 只看該作者
7#
發(fā)表于 2025-3-22 17:08:42 | 只看該作者
8#
發(fā)表于 2025-3-23 00:21:57 | 只看該作者
Gaussian Fractional Integrals and Fractional Derivatives, and Their Boundedness on Gaussian Functioe Ornstein–Uhlenbeck operator ., and then, Riesz and Bessel fractional derivatives. We study their regularity on Gaussian Lipschitz spaces, on Gaussian Besov–Lipschitz spaces, and on Gaussian Triebel–Lizorkin spaces. The results obtained are essentially similar to the classical results, as mentioned
9#
發(fā)表于 2025-3-23 01:41:28 | 只看該作者
Preliminary Results: The Gaussian Measure and Hermite Polynomials, which are orthogonal polynomials, with respect to the Gaussian measure, and discuss in detail most of their properties. The interested reader will find the properties and identities of all classical orthogonal polynomials listed in the appendix.
10#
發(fā)表于 2025-3-23 09:10:46 | 只看該作者
,The Poisson–Hermite Semigroup, study the characterization of the .-harmonic functions, the generalized Poisson–Hermite semigroups, and the conjugated Poisson–Hermite semigroup which, as in the classical case, is closely related to the notion of singular integrals.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汕尾市| 土默特左旗| 唐山市| 拉萨市| 安康市| 蓝田县| 卢龙县| 裕民县| 武鸣县| 巫山县| 西峡县| 马鞍山市| 永胜县| 江川县| 自治县| 双桥区| 琼中| 东方市| 临城县| 武定县| 郧西县| 涞水县| 黔西县| 句容市| 和政县| 金华市| 兴隆县| 互助| 汝南县| 紫阳县| 伽师县| 平原县| 资中县| 庄浪县| 敖汉旗| 卫辉市| 汉寿县| 新龙县| 东平县| 新安县| 莱西市|