找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Gauge Invariance and Weyl-polymer Quantization; Franco Strocchi Book 2016 Springer International Publishing Switzerland 2016 Canonical com

[復(fù)制鏈接]
樓主: Gratification
11#
發(fā)表于 2025-3-23 10:39:52 | 只看該作者
12#
發(fā)表于 2025-3-23 17:02:35 | 只看該作者
978-3-319-17694-9Springer International Publishing Switzerland 2016
13#
發(fā)表于 2025-3-23 20:37:25 | 只看該作者
14#
發(fā)表于 2025-3-24 02:15:44 | 只看該作者
Ein Vorspiel zu Gibbon im 18. Jahrhundert,rting point is the identification of the canonical variables .,?., which in the classical case describe the configurations of the system; then the quantization procedure amounts to replacing the classical canonical Poisson brackets by commutators (in units in which .) . hereafter called ..
15#
發(fā)表于 2025-3-24 03:39:31 | 只看該作者
16#
發(fā)表于 2025-3-24 08:50:33 | 只看該作者
Zur Diagnose der kindlichen Tuberkuloseuine Heisenberg variables, since one cannot write the corresponding canonical commutation relations in Heisenberg form. In fact, ., would imply ., (the existence of .., . is given by the self-adjointness of .), which yields ., ., contrary to the constraint .. One is then led to consider a Weyl quant
17#
發(fā)表于 2025-3-24 12:25:03 | 只看該作者
18#
發(fā)表于 2025-3-24 18:42:30 | 只看該作者
19#
發(fā)表于 2025-3-24 19:04:13 | 只看該作者
20#
發(fā)表于 2025-3-25 02:11:17 | 只看該作者
Non-regular Representations in Quantum Field Theory,The traditional (historically the first) approach to field quantization. mimics very closely the standard quantum mechanical case, by realizing a field as a mechanical system of infinite degrees of freedom and by adopting the canonical formalism and quantization.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马山县| 通辽市| 麦盖提县| 施甸县| 梨树县| 宿松县| 阿鲁科尔沁旗| 缙云县| 正镶白旗| 宁强县| 龙南县| 弥渡县| 宁阳县| 仁寿县| 和静县| 乌鲁木齐县| 灌南县| 鄢陵县| 泸溪县| 阿瓦提县| 抚宁县| 彩票| 长泰县| 当涂县| 丰顺县| 大足县| 玉林市| 黔西县| 措美县| 麻阳| 喀喇| 保山市| 拉萨市| 电白县| 牡丹江市| 石景山区| 贵德县| 普定县| 呼伦贝尔市| 梅河口市| 交口县|