找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Games, Decisions, and Markets; Yasuhiro Sakai Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license to Spring

[復制鏈接]
樓主: CHORD
31#
發(fā)表于 2025-3-26 23:59:23 | 只看該作者
Topology Uniform Structures Function Spaces,. It is Paul A. Samuelson’s contribution that boldly introduced to microeconomic theory the brand-new concept of . against the then standard doctrine of ordinal utility. The main result of this chapter is that Houthakker’s . holds if and only if Samuelson’s . and . both hold. This new equivalence re
32#
發(fā)表于 2025-3-27 01:32:39 | 只看該作者
33#
發(fā)表于 2025-3-27 05:41:20 | 只看該作者
34#
發(fā)表于 2025-3-27 13:27:30 | 只看該作者
,Metrische R?ume und Stetigkeit,f . Although such an extension from one output to several outputs seems to be straightforward, it nevertheless requires special care and careful interpretations. More specifically, it is concerned with a systematic examination of what happens when a firm that has been in equilibrium at certain price
35#
發(fā)表于 2025-3-27 14:18:27 | 只看該作者
,Zur Topologie der euklidischen R?ume,ambitious framework for the interdependence of several markets, it is quite unfortunate that this approach has been rather neglected in the academic circle. We suppose that there are several reasons for this. First, the traditional general equilibrium approach developed by Lionel W. McKenjie, Gerald
36#
發(fā)表于 2025-3-27 19:19:19 | 只看該作者
37#
發(fā)表于 2025-3-27 23:47:35 | 只看該作者
Von Neumann, Morgenstern, and Theory of Games: Critical Reassessment of Zero-Sum Gamesfted mathematician John von Neumann and brilliant economist Oskar Morgenstern. There are two memorial years for game theory: 1928 as the Year of Birth for Game Theory and 1944 as the Year of Maturity for Game Theory. Even after the basic mathematical skeleton for game theory was provided by von Neum
38#
發(fā)表于 2025-3-28 05:21:54 | 只看該作者
Reassessing Zero-Sum Games: Various Types of Matching Pennies von Neumann and economist Oscar Morgenstern during the difficult times of Second World War. First of all, we will intensively discuss several Zero-Sum Two-Person Games, with special reference to the Games of Matching Pennies. New graphical illustrations will be attempted for clarification of the ma
39#
發(fā)表于 2025-3-28 09:01:51 | 只看該作者
Non-zero-sum Games and Nash Equilibriums: Applications to Generation Gaps Problemseory of duopoly and oligopoly. We first focus on the “residence game” as a typical non-zero-sum game. We pick up the old and the young couples, who have to decide whether they live together or separately and whether they live in the country or in the city. We shed new light on “Generation Gaps Probl
40#
發(fā)表于 2025-3-28 10:36:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
贵定县| 江孜县| 来凤县| 夏邑县| 博罗县| 共和县| 嘉祥县| 疏勒县| 佳木斯市| 龙口市| 湖北省| 兴义市| 古浪县| 天津市| 兴化市| 天镇县| 乌拉特中旗| 永胜县| 安塞县| 普格县| 惠来县| 沂水县| 民丰县| 武城县| 香格里拉县| 大余县| 萨嘎县| 花莲县| 宾阳县| 昌宁县| 望奎县| 东莞市| 长子县| 库伦旗| 衡阳县| 阿克陶县| 抚州市| 永修县| 大冶市| 宜昌市| 黄石市|