找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems; Tatiana Tatarenko Book 2017 Springer International

[復(fù)制鏈接]
查看: 41711|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:03:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems
編輯Tatiana Tatarenko
視頻videohttp://file.papertrans.cn/381/380525/380525.mp4
概述Presents new, efficient methods for optimization in large-scale multi-agent systems.Develops efficient optimization algorithms for three different information settings in multi-agent systems.Sets opti
圖書封面Titlebook: Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems;  Tatiana Tatarenko Book 2017 Springer International
描述.This book presents new efficient methods for optimization in realistic large-scale, multi-agent systems. These methods do not require the agents to have the full information about the system, but instead allow them to make their local decisions based only on the local information, possibly obtained during communication with their local neighbors. The book, primarily aimed at researchers in optimization and control, considers three different information settings in multi-agent systems: oracle-based, communication-based, and payoff-based. For each of these information types, an efficient optimization algorithm is developed, which leads the system to an optimal state. The optimization problems are set without such restrictive assumptions as convexity of the objective functions, complicated communication topologies, closed-form expressions for costs and utilities, and finiteness of the system’s state space.?.
出版日期Book 2017
關(guān)鍵詞distributed optimization; game-theoretic approach to optimization; learning algorithms; consensus-based
版次1
doihttps://doi.org/10.1007/978-3-319-65479-9
isbn_softcover978-3-319-88039-6
isbn_ebook978-3-319-65479-9
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems影響因子(影響力)




書目名稱Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems影響因子(影響力)學(xué)科排名




書目名稱Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems網(wǎng)絡(luò)公開度




書目名稱Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems被引頻次




書目名稱Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems被引頻次學(xué)科排名




書目名稱Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems年度引用




書目名稱Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems年度引用學(xué)科排名




書目名稱Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems讀者反饋




書目名稱Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:35:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:42:32 | 只看該作者
n problems are set without such restrictive assumptions as convexity of the objective functions, complicated communication topologies, closed-form expressions for costs and utilities, and finiteness of the system’s state space.?.978-3-319-88039-6978-3-319-65479-9
地板
發(fā)表于 2025-3-22 05:56:22 | 只看該作者
5#
發(fā)表于 2025-3-22 12:00:20 | 只看該作者
6#
發(fā)表于 2025-3-22 16:29:05 | 只看該作者
7#
發(fā)表于 2025-3-22 18:16:56 | 只看該作者
https://doi.org/10.1007/978-3-642-92345-6Due to the emergence of distributed networked systems, problems of cooperative control in multi-agent systems have gained a lot of attention over the recent years. Some examples of networked multi-agent systems are smart grids, social networks, autonomous vehicle teams, processors in machine learning scenarios, etc.
8#
發(fā)表于 2025-3-22 23:50:46 | 只看該作者
https://doi.org/10.1007/978-3-322-96216-4In this section, a background of the game theory with applications to optimization in multi-agent systems is presented.
9#
發(fā)表于 2025-3-23 02:45:51 | 只看該作者
Willi Paul Adams,Erich AngermannThis chapter deals with multi-agent systems whose objective is modeled by means of potential games and which are endowed with . As it was discussed in the previous chapter,
10#
發(fā)表于 2025-3-23 05:41:48 | 只看該作者
Amerikastudien / American StudiesThis chapter studies the way to apply stochastic approximation procedure, known as the Robbins–Monro procedure [RM51], to . as well as to . and ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜阳市| 汤阴县| 普宁市| 沂水县| 玉溪市| 中西区| 巢湖市| 湘乡市| 四会市| 定州市| 蓝山县| 吉安市| 广汉市| 珠海市| 海丰县| 巢湖市| 洛浦县| 大关县| 苍南县| 鄂托克旗| 高尔夫| 黄陵县| 荔浦县| 伊通| 靖边县| 兴化市| 子长县| 应用必备| 临澧县| 景泰县| 淮南市| 巴青县| 万全县| 惠来县| 丰都县| 伊春市| 长沙市| 龙州县| 佛山市| 依安县| 龙江县|