找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Game Theory for Networks; 2nd International IC Rahul Jain,Rajgopal Kannan Conference proceedings 2012 ICST Institute for Computer Science,

[復(fù)制鏈接]
樓主: affront
51#
發(fā)表于 2025-3-30 10:47:52 | 只看該作者
52#
發(fā)表于 2025-3-30 14:18:12 | 只看該作者
53#
發(fā)表于 2025-3-30 18:29:44 | 只看該作者
54#
發(fā)表于 2025-3-31 00:08:06 | 只看該作者
55#
發(fā)表于 2025-3-31 01:30:52 | 只看該作者
56#
發(fā)表于 2025-3-31 08:11:48 | 只看該作者
https://doi.org/10.1057/978-1-137-56652-2ation partners to realize a Nash Bargaining Solution (NBS) for secondary coexistence. We illustrate how this mechanism works when secondary users in an OFDMA access network form cooperation through BE for which the NBS is calculated based on information obtained from the database.
57#
發(fā)表于 2025-3-31 13:13:58 | 只看該作者
58#
發(fā)表于 2025-3-31 16:56:58 | 只看該作者
,Analytische L?sungen mit Beispielen,ng another model for stochastic congestion game in which a fixed amount of divisible demand arrives each day. This demand can shipped to destination by sending some part today and remaining the next day.
59#
發(fā)表于 2025-3-31 20:41:53 | 只看該作者
60#
發(fā)表于 2025-3-31 22:46:17 | 只看該作者
https://doi.org/10.1007/978-3-642-78709-6cal subsets and all edges in the same critical subset are attacked with the same probability. For the game of zero cost of attack considered in [8], we characterize the set of all Nash equilibria. Some implications of the results are discussed and a detailed proof of the NE theorem is provided.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
从江县| 长春市| 繁昌县| 格尔木市| 页游| 长治县| 县级市| 马龙县| 萍乡市| 东乡| 登封市| 于田县| 潍坊市| 芒康县| 安泽县| 酒泉市| 阿克陶县| 凌源市| 安溪县| 南靖县| 常山县| 洪湖市| 长顺县| 同仁县| 南和县| 嘉义县| 屏山县| 封丘县| 商丘市| 乐平市| 安国市| 永德县| 武汉市| 汝阳县| 广灵县| 岑溪市| 玉屏| 兴安县| 松桃| 曲阜市| 左权县|