找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Game Theory; A Multi-Leveled Appr Hans Peters Textbook 20081st edition Springer-Verlag Berlin Heidelberg 2008 Applications of Game Theory.N

[復(fù)制鏈接]
樓主: 乳缽
41#
發(fā)表于 2025-3-28 15:25:40 | 只看該作者
42#
發(fā)表于 2025-3-28 21:10:17 | 只看該作者
43#
發(fā)表于 2025-3-29 02:43:58 | 只看該作者
Die Statistik in der Vergangenheit]..In this chapter we consider two-person . repeated games and formulate Folk theorems both for subgame perfect and for Nash equilibrium. The approach is somewhat informal, and mainly based on examples. In Sect. 7.1 we consider subgame perfect equilibrium and in Sect. 7.2 we consider Nash equilibrium.
44#
發(fā)表于 2025-3-29 04:30:38 | 只看該作者
Physikalische krankmachende Faktoren (Folge)ation as in Problem 9.13..In this chapter a few other cooperative game theory models are discussed: bargaining problems in Sect. 10.1, exchange economies in Sect. 10.2, matching problems in Sect. 10.3, and house exchange in Sect. 10.4.
45#
發(fā)表于 2025-3-29 09:19:28 | 只看該作者
Finite Two-Person Gamespt of strict domination to facilitate computation of Nash equilibria and to compute equilibria also of larger games. The structure of this chapter thus parallels the structure of Chap. 2. For a deeper and more comprehensive analysis of finite two-person games see Chap. 13.
46#
發(fā)表于 2025-3-29 13:14:51 | 只看該作者
47#
發(fā)表于 2025-3-29 18:14:53 | 只看該作者
48#
發(fā)表于 2025-3-29 22:53:55 | 只看該作者
Finite Two-Person Zero-Sum Gamesd in Sect. 1.3.1 belong to this class..In Sect. 2.1 the basic definitions and theory are discussed. Section 2.2 shows how to solve 2 × . and . × 2 games, and larger games by elimination of strictly dominated strategies.
49#
發(fā)表于 2025-3-30 02:12:44 | 只看該作者
Matrix Games 12.1 presents a proof of the Minimax Theorem, and Sect. 12.2 shows how a matrix game can be solved – optimal strategies and the value of the game can be found – by solving an associated linear programming problem.
50#
發(fā)表于 2025-3-30 07:27:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山西省| 静海县| 冕宁县| 大洼县| 三门县| 恩平市| 多伦县| 鹤庆县| 武义县| 麻栗坡县| 简阳市| 含山县| 古蔺县| 环江| 禄丰县| 东乌珠穆沁旗| 社旗县| 绿春县| 静海县| 苍南县| 黄陵县| 阿勒泰市| 德钦县| 苗栗县| 葫芦岛市| 凤山县| 黔西县| 沾益县| 正安县| 双流县| 江达县| 灵川县| 那曲县| 廉江市| 郑州市| 凤台县| 清流县| 鹰潭市| 广丰县| 淮北市| 突泉县|