找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois’ Dream: Group Theory and Differential Equations; Group Theory and Dif Michio Kuga Book 1993 Birkh?user Boston 1993 Galois group.Galo

[復(fù)制鏈接]
樓主: Monomania
11#
發(fā)表于 2025-3-23 11:49:06 | 只看該作者
https://doi.org/10.1007/978-3-322-82272-7thin, and trails behind as we walk, from birth to death. The tail extends far away, beyond our world, and originates in the Land of the Dead. When we walk, the tail is reeled out from its source. When we have pulled out the entire tail, we die.
12#
發(fā)表于 2025-3-23 17:32:36 | 只看該作者
The Ninth Week: Covering surfaces and fundamental groupsin .. Let . (.) be the figure in . which . traces out. In particular, if . traces a curve . in .’, then the trace . (.) of the point . (.) = . is again a curve in .. If . is a closed curve, then . (.) is also a closed curve.
13#
發(fā)表于 2025-3-23 18:50:16 | 只看該作者
14#
發(fā)表于 2025-3-23 23:57:24 | 只看該作者
Grundlagen der elektronischen Patientenakte,The title of this series of lectures is “Group Theory and Differential Equations”. The contents are briefly explained in the preface. The 0th week is a summary of the preliminary meeting of the course. (In the lecture, I outlined everything in the course, and left the students in a fog.)
15#
發(fā)表于 2025-3-24 04:59:08 | 只看該作者
16#
發(fā)表于 2025-3-24 07:29:24 | 只看該作者
17#
發(fā)表于 2025-3-24 11:34:51 | 只看該作者
18#
發(fā)表于 2025-3-24 17:59:54 | 只看該作者
Sven Reinecke,Laura Johanna NollThe scene of today’s lecture is set in a region in a plane. We define a region to be a part of a plane surrounded by some closed curves. For example, the portion . in Figure 4.1 surrounded by the closed curves .., .., and .. is a region (i.e., the unshaded part of the figure).
19#
發(fā)表于 2025-3-24 20:00:12 | 只看該作者
20#
發(fā)表于 2025-3-25 02:48:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 00:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
烟台市| 巨鹿县| 昌图县| 垦利县| 松桃| 嘉荫县| 杨浦区| 澄江县| 浏阳市| 昌平区| 江西省| 浦东新区| 郁南县| 大余县| 通城县| 宜阳县| 光泽县| 榆社县| 马尔康县| 广汉市| 定日县| 闽清县| 中方县| 封丘县| 盱眙县| 青州市| 陇南市| 宜兴市| 岳西县| 同心县| 孟连| 泾川县| 酉阳| 额济纳旗| 海晏县| 团风县| 新和县| 四会市| 嘉黎县| 涟水县| 黄平县|