找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Theory of Linear Differential Equations; Marius Put,Michael F. Singer Book 2003 Springer-Verlag Berlin Heidelberg 2003 Arithmetic.A

[復(fù)制鏈接]
樓主: 游牧
31#
發(fā)表于 2025-3-26 21:00:22 | 只看該作者
32#
發(fā)表于 2025-3-27 05:00:18 | 只看該作者
Algorithmic Considerations.(.) is the usual one, namely .. We, furthermore, assume that there are algorithms to perform the field operations in . as well as algorithms to factor polynomials over .(.) (see [102, 234] for a formalization of this concept). Natural choices for . are ., any number field or the algebraic closure of ..
33#
發(fā)表于 2025-3-27 08:27:24 | 只看該作者
Monodromy, the Riemann-Hilbert Problem, and the Differential Galois Group matrix whose columns are the . independent solutions .,…, . then . is a fundamental matrix with entries in .({.?.}). One can normalize . such that .(.) is the identity matrix. The question we are interested in is:
34#
發(fā)表于 2025-3-27 12:07:00 | 只看該作者
Moduli for Singular Differential Equationsion of moduli spaces for algebraic curves of a given genus . ≥ 1. In order to obtain a fine moduli space one has to consider curves of genus . with additional finite data, namely a suitable level structure. The corresponding moduli functor is then representable and is represented by a fine moduli space (see Proposition 12.3).
35#
發(fā)表于 2025-3-27 16:39:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:08:08 | 只看該作者
Aktienanalyse in drei Schrittenis closed under all operations of linear algebra, i.e., kernels, cokernels, direct sums, and tensor products. Then . is also a neutral tannakian category and equivalent to Repr. for some affine group scheme ..
37#
發(fā)表于 2025-3-28 01:47:16 | 只看該作者
38#
發(fā)表于 2025-3-28 05:40:00 | 只看該作者
39#
發(fā)表于 2025-3-28 07:37:31 | 只看該作者
40#
發(fā)表于 2025-3-28 11:05:12 | 只看該作者
0072-7830 tannakian categories that are used. .This volume will become a standard reference for all mathematicians in this area of mathematics, including graduate students..978-3-642-62916-7978-3-642-55750-7Series ISSN 0072-7830 Series E-ISSN 2196-9701
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松阳县| 江华| 洞头县| 天峻县| 收藏| 习水县| 古蔺县| 石嘴山市| 公主岭市| 西城区| 天水市| 汉中市| 灵川县| 平塘县| 文成县| 罗田县| 乌兰浩特市| 城市| 张家口市| 健康| 商城县| 林西县| 北流市| 阳朔县| 苍山县| 哈巴河县| 马边| 砀山县| 雅安市| 普陀区| 大足县| 正定县| 宁化县| 昭平县| 武夷山市| 杭锦旗| 巴彦淖尔市| 聂拉木县| 开鲁县| 满城县| 阳新县|