找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Theory and Modular Forms; Ki-ichiro Hashimoto,Katsuya Miyake,Hiroaki Nakamur Book 2004 Kluwer Academic Publishers 2004 Abelian vari

[復(fù)制鏈接]
樓主: CLAST
21#
發(fā)表于 2025-3-25 05:02:41 | 只看該作者
22#
發(fā)表于 2025-3-25 10:44:51 | 只看該作者
On the Essential Dimension of ,-GroupsWe improve the known bounds on the essential dimension of .-groups over (large) fields of characteristic ..
23#
發(fā)表于 2025-3-25 15:16:54 | 只看該作者
On the Non-Existence of Certain Galois ExtensionsIn this article, we give a survey of my results on the non-existence and finiteness of certain Galois extensions of the rational number field ? with prescribed ramification. The detail has been (will be) published in [8], [9], [10], [11], [12].
24#
發(fā)表于 2025-3-25 18:32:44 | 只看該作者
Frobenius Modules and Galois GroupsIn these notes some basic facts on Frobenius modules are collected. Frobenius modules are finite-dimensional vector spaces over fields with a Frobenius endomorphism ?, provided with an injective ?-semilinear Frobenius operator Ф.
25#
發(fā)表于 2025-3-25 23:31:55 | 只看該作者
26#
發(fā)表于 2025-3-26 02:48:00 | 只看該作者
27#
發(fā)表于 2025-3-26 07:24:33 | 只看該作者
Projektauftrag und Projektabwicklung, inverse Galois problem. Especially the case when . = . the rational number field, plays an important role in the study of the absolute Galois Group of .. By many mathematicians, the existence of ./.-extensions has been shown for a lot of finite groups . by now (cf. Malle-Matzat [14], Serre [19], etc.)
28#
發(fā)表于 2025-3-26 10:19:09 | 只看該作者
29#
發(fā)表于 2025-3-26 15:47:57 | 只看該作者
E. Blanck,H. Niklas,Br. Tacke,F. Gieseckeelds of their genus fields. More precisely, under GRH, among the 305 imaginary quadratic number fields with discriminants larger than —1000, at most 16 fields are exceptional [39], [40], and among the 1690 real quadratic number fields with discriminants less than or equal to 5565, only 4 fields are exceptional [41].
30#
發(fā)表于 2025-3-26 20:11:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涡阳县| 阿鲁科尔沁旗| 冷水江市| 龙门县| 当涂县| 奉节县| 舒城县| 偏关县| 南汇区| 呼玛县| 苏州市| 财经| 静宁县| 平顺县| 友谊县| 行唐县| 离岛区| 罗江县| 漳州市| 视频| 东安县| 宽甸| 广丰县| 司法| 山东省| 扶沟县| 洱源县| 山西省| 鄱阳县| 珠海市| 青川县| 都江堰市| 临邑县| 象州县| 康马县| 亚东县| 新和县| 双柏县| 工布江达县| 久治县| 新宾|