找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Theory; Joseph Rotman Textbook 1998Latest edition Springer Science+Business Media New York 1998 Galois group.Galois theory.Group th

[復(fù)制鏈接]
查看: 44874|回復(fù): 59
樓主
發(fā)表于 2025-3-21 19:54:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Galois Theory
編輯Joseph Rotman
視頻videohttp://file.papertrans.cn/381/380423/380423.mp4
叢書名稱Universitext
圖書封面Titlebook: Galois Theory;  Joseph Rotman Textbook 1998Latest edition Springer Science+Business Media New York 1998 Galois group.Galois theory.Group th
描述The first edition aimed to give a geodesic path to the Fundamental Theorem of Galois Theory, and I still think its brevity is valuable. Alas, the book is now a bit longer, but I feel that the changes are worthwhile. I began by rewriting almost all the text, trying to make proofs clearer, and often giving more details than before. Since many students find the road to the Fundamental Theorem an intricate one, the book now begins with a short section on symmetry groups of polygons in the plane; an analogy of polygons and their symmetry groups with polynomials and their Galois groups can serve as a guide by helping readers organize the various definitions and constructions. The exposition has been reorganized so that the discussion of solvability by radicals now appears later; this makes the proof of the Abel-Ruffini theo rem easier to digest. I have also included several theorems not in the first edition. For example, the Casus Irreducibilis is now proved, in keeping with a historical interest lurking in these pages.
出版日期Textbook 1998Latest edition
關(guān)鍵詞Galois group; Galois theory; Group theory; Symmetry group; field; homomorphism
版次2
doihttps://doi.org/10.1007/978-1-4612-0617-0
isbn_softcover978-0-387-98541-1
isbn_ebook978-1-4612-0617-0Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer Science+Business Media New York 1998
The information of publication is updating

書目名稱Galois Theory影響因子(影響力)




書目名稱Galois Theory影響因子(影響力)學(xué)科排名




書目名稱Galois Theory網(wǎng)絡(luò)公開度




書目名稱Galois Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Galois Theory被引頻次




書目名稱Galois Theory被引頻次學(xué)科排名




書目名稱Galois Theory年度引用




書目名稱Galois Theory年度引用學(xué)科排名




書目名稱Galois Theory讀者反饋




書目名稱Galois Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:56:12 | 只看該作者
Galois Theory978-1-4612-0617-0Series ISSN 0172-5939 Series E-ISSN 2191-6675
板凳
發(fā)表于 2025-3-22 02:51:51 | 只看該作者
地板
發(fā)表于 2025-3-22 05:32:24 | 只看該作者
The Air War in South-East Asia,a normal subgroup, and so the quotient group ./. exists. The elements of ./. are the cosets . + ., where . ∈., and addition is given by in particular, the zero element is 0 + . = . Recall that .′ . if and only if . — .′ ∈ .. Finally, the . π : . → ./. is the surjective (group) homomorphism defined by . ? . + ..
5#
發(fā)表于 2025-3-22 08:47:08 | 只看該作者
Quotient Rings,a normal subgroup, and so the quotient group ./. exists. The elements of ./. are the cosets . + ., where . ∈., and addition is given by in particular, the zero element is 0 + . = . Recall that .′ . if and only if . — .′ ∈ .. Finally, the . π : . → ./. is the surjective (group) homomorphism defined by . ? . + ..
6#
發(fā)表于 2025-3-22 15:19:37 | 只看該作者
Air Pollution, Acid Rain and the EnvironmentThe algebraic system encompassing fields and polynomials is a commutative ring with 1. We assume that the reader has, at some time, heard the words ., and .; our discussion is, therefore, not leisurely, but it is complete.
7#
發(fā)表于 2025-3-22 17:14:35 | 只看該作者
The Changing Operational Environment,Two types of ring are especially important: domains and fields.
8#
發(fā)表于 2025-3-22 23:04:12 | 只看該作者
9#
發(fā)表于 2025-3-23 02:43:37 | 只看該作者
Industrial Emissions ManagementThe notion of prime number can be generalized to polynomials.
10#
發(fā)表于 2025-3-23 07:08:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辽阳市| 苍山县| 巨鹿县| 本溪| 长阳| 城步| 安国市| 独山县| 普兰店市| 奈曼旗| 牡丹江市| 大港区| 镇安县| 逊克县| 花莲市| 永寿县| 东阿县| 宁波市| 天气| 罗定市| 宜昌市| 吉林省| 康定县| 雅江县| 白河县| 六安市| 乃东县| 金门县| 德江县| 香港 | 遂昌县| 桐庐县| 镇平县| 天镇县| 鄂州市| 浦北县| 陕西省| 博乐市| 吉林省| 车险| 内丘县|